A preliminary numerical study of a swirling jet behind a circular disc

Author(s):  
H T Toh ◽  
R F Huang ◽  
M J Chern

The three-dimensional flow fields behind a circular disc produced by an annular swirling jet alone and by an annular swirling jet with a central jet issuing from the disc centre are studied by solving the three-dimensional incompressible Navier—Stokes equations numerically using the solution algorithm of Hirt et al. ( Los Alamos Scientific Lab. Rept. LA-5852 (1970)). The swirl number and the Reynolds number based on the disc diameter and the volumetric mean axial velocity of the annular swirling jet are S=0.194 and Re=656, respectively. The convective and diffusive terms in the governing equations are discretized using the second-order central difference scheme. The resulting discretized equations are advanced in time using the second-order Runge—Kutta scheme. The simulation shows that the flow field behind the circular disc exhibit periodic oscillating behaviour, with the second case having a higher frequency due to the presence of the central jet. The mechanism responsible for this oscillating behaviour is identified and discussed. An analysis of the mean velocity fields in the mid-plane shows the existence of a stagnation point on the axis of symmetry in the first case and two saddle points off the axis of symmetry in the second case.

Author(s):  
Mulugeta K. Berhe ◽  
Suhas V. Patankar

Hydrodynamic plots are presented from a numerical study conducted on a three dimensional film cooling geometry that includes the main flow, injection hole, and the plenum. The fully elliptic Navier-Stokes equations were solved over a body fitted grid using the control volume method. Turbulence closure was achieved using the k-ε turbulence model. The results presented include contour plots of the resultant velocity at hole exit, as well as streamwise mean velocity and turbulence intensity contours at several cross-stream planes. Computations were performed for blowing ratios of 0.5 and 1.0, and a density ratio of 2. The injection hole was 12.7 mm in diameter, 3.5 diameters long, and inclined at 35° to the streamwise direction. Results obtained from this analysis are compared with the available experimental results. Whereas the overall agreement is good, important differences were found. Compared to the experimental jet, the computed jet showed (a) a larger vertical velocity at hole exit, (b) a smaller lateral spread in the downstream region, especially at low blowing ratios.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Author(s):  
Jean Franc¸ois Sigrist ◽  
Christian Laine ◽  
Dominique Lemoine ◽  
Bernard Peseux

This paper is related to the study of a nuclear propulsion reactor prototype for the French Navy. This prototype is built on ground and is to be dimensioned toward seismic loading. The dynamic analysis takes the coupled fluid structure analysis into account. The basic fluid models used by design engineers are inviscid incompressible or compressible. The fluid can be described in a bidimensional by slice or a three-dimensional approach. A numerical study is carried out on a generic problem for the linear FSI dynamic problem. The results of this study are presented and discussed. As a conclusion, the three-dimensional inviscid incompressible fluid appears to be the best compromise between the description of physical phenomena and the cost of modeling. The geometry of the reactor is such that large displacements of the structure in the fluid can occur. Therefore, the linearity hypothesis might not be longer valid. The case of large amplitude imposed oscillating motion of a cylinder in a confined fluid is numerically studied. A CFD code is used to investigate the fluid behavior solving the NAVIER-STOKES equations. The forces induced on the cylinder by the fluid are computed and compared to the linear solution. The limit of the linear model can then be exhibited.


2018 ◽  
Author(s):  
Jiajun Chen ◽  
Yue Sun ◽  
Hang Zhang ◽  
Dakui Feng ◽  
Zhiguo Zhang

Mixing in pipe junctions can play an important role in exciting force and distribution of flow in pipe network. This paper investigated the cross pipe junction and proposed an improved plan, Y-shaped pipe junction. The numerical study of a three-dimensional pipe junction was performed for calculation and improved understanding of flow feature in pipe. The filtered Navier–Stokes equations were used to perform the large-eddy simulation of the unsteady incompressible flow in pipe. From the analysis of these results, it clearly appears that the vortex strength and velocity non-uniformity of centerline, can be reduced by Y-shaped junction. The Y-shaped junction not only has better flow characteristic, but also reduces head loss and exciting force. The results of the three-dimensional improvement analysis of junction can be used in the design of pipe network for industry.


1998 ◽  
Vol 14 (1) ◽  
pp. 23-29
Author(s):  
Robert R. Hwang ◽  
Sheng-Yuh Jaw

ABSTRACTThis paper presents a numerical study on turbulent vortex shedding flows past a square cylinder. The 2D unsteady periodic shedding motion was resolved in the calculation and the superimposed turbulent fluctuations were simulated with a second-order Reynolds-stress closure model. The calculations were carried out by solving numerically the fully elliptic ensemble-averaged Navier-Stokes equations coupled with the turbulence model equations together with the two-layer approach in the treatment of the near-wall region. The performance of the computations was evaluated by comparing the numerical results with data from available experiments. Results indicate that the present study gives good agreement in the shedding frequency and mean drag as well as in some phase profiles of the mean velocity.


Author(s):  
N. Lymberopoulos ◽  
K. Giannakoglou ◽  
I. Nikolaou ◽  
K. D. Papailiou ◽  
A. Tourlidakis ◽  
...  

Mechanical constraints dictate the existence of tip clearances in rotating cascades, resulting to a flow leakage through this clearance which considerably influences the efficiency and range of operation of the machine. Three-dimensional Navier-Stokes solvers are often used for the numerical study of compressor and turbine stages with tip-clearance. The quality of numerical predictions depends strongly on how accurately the blade tip region is modelled; in this respect the accurate modelling of tip region was one of the main goals of this work. In the present paper, a 3-D Navier-Stokes solver is suitably adapted so that the flat tip surface of a blade and its sharp edges could be accurately modelled, in order to improve the precision of the calculation in the tip region. The adapted code solves the fully elliptic, steady, Navier-Stokes equations through a space-marching algorithm and a pressure correction technique; the H-type topology is retained, even in cases with thick leading edges where a special treatment is introduced herein. The analysis is applied to two different cases, a linear cascade and a compressor rotor, and comparisons with experimental data are provided.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1235 ◽  
Author(s):  
Chaolong Li ◽  
Zhixun Xia ◽  
Likun Ma ◽  
Xiang Zhao ◽  
Binbin Chen

Scramjet based on solid propellant is a good supplement for the power device of future hypersonic vehicles. A new scramjet combustor configuration using solid fuel, namely, the solid fuel rocket scramjet (SFRSCRJ) combustor is proposed. The numerical study was conducted to simulate a flight environment of Mach 6 at a 25 km altitude. Three-dimensional Reynolds-averaged Navier–Stokes equations coupled with shear stress transport (SST) k − ω turbulence model are used to analyze the effects of the cavity and its position on the combustor. The feasibility of the SFRSCRJ combustor with cavity is demonstrated based on the validation of the numerical method. Results show that the scramjet combustor configuration with a backward-facing step can resist high pressure generated by the combustion in the supersonic combustor. The total combustion efficiency of the SFRSCRJ combustor mainly depends on the combustion of particles in the fuel-rich gas. A proper combustion organization can promote particle combustion and improve the total combustion efficiency. Among the four configurations considered, the combustion efficiency of the mid-cavity configuration is the highest, up to about 70%. Therefore, the cavity can effectively increase the combustion efficiency of the SFRSCRJ combustor.


Author(s):  
Mou-jin Zhang ◽  
Chuan-gang Gu ◽  
Yong-miao Miao

The complex three-dimensional flow field in a centrifugal impeller with low speed is studied in this paper. Coupled with high–Reynolds–number k–ε turbulence model, the fully three–dimensional Reynolds averaged Navier–Stokes equations are solved. The Semi–Implicit Method for Pressure–Linked Equations (SIMPLE) algorithm is used. And the non–staggered grid arrangement is also used. The computed results are compared with the available experimental data. The comparison shows good agreement.


Author(s):  
Azita Soleymani ◽  
Eveliina Takasuo ◽  
Piroz Zamankhan ◽  
William Polashenski

Results are presented from a numerical study examining the flow of a viscous, incompressible fluid through random packing of nonoverlapping spheres at moderate Reynolds numbers (based on pore permeability and interstitial fluid velocity), spanning a wide range of flow conditions for porous media. By using a laminar model including inertial terms and assuming rough walls, numerical solutions of the Navier-Stokes equations in three-dimensional porous packed beds resulted in dimensionless pressure drops in excellent agreement with those reported in a previous study (Fand et al., 1987). This observation suggests that no transition to turbulence could occur in the range of Reynolds number studied. For flows in the Forchheimer regime, numerical results are presented of the lateral dispersivity of solute continuously injected into a three-dimensional bounded granular bed at moderate Peclet numbers. Lateral fluid dispersion coefficients are calculated by comparing the concentration profiles obtained from numerical and analytical methods. Comparing the present numerical results with data available in the literature, no evidence has been found to support the speculations by others for a transition from laminar to turbulent regimes in porous media at a critical Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document