A preliminary numerical study of a swirling jet behind a circular disc
The three-dimensional flow fields behind a circular disc produced by an annular swirling jet alone and by an annular swirling jet with a central jet issuing from the disc centre are studied by solving the three-dimensional incompressible Navier—Stokes equations numerically using the solution algorithm of Hirt et al. ( Los Alamos Scientific Lab. Rept. LA-5852 (1970)). The swirl number and the Reynolds number based on the disc diameter and the volumetric mean axial velocity of the annular swirling jet are S=0.194 and Re=656, respectively. The convective and diffusive terms in the governing equations are discretized using the second-order central difference scheme. The resulting discretized equations are advanced in time using the second-order Runge—Kutta scheme. The simulation shows that the flow field behind the circular disc exhibit periodic oscillating behaviour, with the second case having a higher frequency due to the presence of the central jet. The mechanism responsible for this oscillating behaviour is identified and discussed. An analysis of the mean velocity fields in the mid-plane shows the existence of a stagnation point on the axis of symmetry in the first case and two saddle points off the axis of symmetry in the second case.