Interface biomechanics of the Anca Dual Fit hip stem: An in vitro experimental study
The Anca Dual Fit hip stem (Cremascoli Wright, Milan, Italy) is a partially cemented stem developed to overcome the drawbacks of both cemented and uncemented fixations. Its design was based on the hypothesis that partial cementing would ensure the primary stability necessary to allow bone ingrowth on the cement-free stem surfaces. At the same time, the limitation of the cement to the proximal regions would prevent stress-shielding by increasing proximal load transfer. After finite element (FE) simulations and in vitro primary stability assessment, an analysis of the long-term stability of the Anca Dual Fit stem was necessary to conclude the preclinical testing. Three stems were implanted in composite femurs and subjected to testing for 1 × 106 cycles, each cycle reproducing the activity of stair climbing. The simulation was designed so as to replicate the physiological loading in a simplified, yet relevant way for this test. Various measurements were collected before, during and after the test in order to give exhaustive information on the response of the implant to long-term, cyclic loading. The present study confirmed the positive results of previous investigations, and proved that the Anca Dual Fit stem has excellent long-term stability; therefore successful clinical outcomes are predicted.