Role of Dissipation Characteristics in Predicting Flow from Dissimilar Centrifugal Pumps

Author(s):  
E A Bunt ◽  
B Parsons ◽  
F Holtzhausen

Examination of flows in a particular case of dissimilar pumps coupled in series or in parallel (without check valves) showed that the ‘classical’ graphical solution of combined characteristics in the [+H, +Q] quadrant did not accord with the output field in certain regions. To predict the full flow fields, it was necessary to take into account dissipative flow characteristics in two other quadrants: for low-output parallel flow (when there is still flow available from the pump of higher head when the ‘weaker’ pump's flow has been reduced to zero), that in the [+H, –Q] quadrant; and for high series flow (after the output head of the pump of lower maximum flow has been reduced to zero), that in the [–H, +Q] quadrant. This problem does not arise when the pumps have identical characteristics.

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 694 ◽  
Author(s):  
Ellora Padhi ◽  
Subhasish Dey ◽  
Venkappayya R. Desai ◽  
Nadia Penna ◽  
Roberto Gaudio

In a natural gravel-bed stream, the bed that has an organized roughness structure created by the streamflow is called the water-worked gravel bed (WGB). Such a bed is entirely different from that created in a laboratory by depositing and spreading gravels in the experimental flume, called the screeded gravel bed (SGB). In this paper, a review on the state-of-the-art research on WGBs is presented, highlighting the role of water-work in determining the bed topographical structures and the turbulence characteristics in the flow. In doing so, various methods used to analyze the bed topographical structures are described. Besides, the effects of the water-work on the turbulent flow characteristics, such as streamwise velocity, Reynolds and form-induced stresses, conditional turbulent events and secondary currents in WGBs are discussed. Further, the results form WGBs and SGBs are compared critically. The comparative study infers that a WGB exhibits a higher roughness than an SGB. Consequently, the former has a higher magnitude of turbulence parameters than the latter. Finally, as a future scope of research, laboratory experiments should be conducted in WGBs rather than in SGBs to have an appropriate representation of the flow field close to a natural stream.


Perfusion ◽  
2021 ◽  
pp. 026765912199618
Author(s):  
Mirko Kaluza ◽  
Benjamin May ◽  
Torsten Doenst

Objective: The COVID-19 pandemic requires thinking about alternatives to establish ECMO when often-limited hardware resources are exhausted. Heart-lung-machines may potentially be used for ECMO but contain roller pumps as compared to centrifugal pumps in ECMO-circuits. We here tested roller pumps as rescue pump for ECMO-establishment. Methods: We set up in vitro circuits on roller pumps from C5 heart-lung-machine with 5 l/minutes flow. In two series, we placed either PVC or silicon tubing for an ECMO circuit into the roller pump. We assessed the mechanical stress on the tubing (aiming to run the pump for at least 1 week), measured the temperature increase generated by the friction and assessed flow characteristics and its measurement in simulated situations resembling tube kinking and suction. Results: The roller pumps led to expected and unexpected adverse events. PVC tubing burst between 36 and 78 hours, while silicon tubing lasted for at least 7 days. At 7 days, the silicone tubing showed significant signs of roller pump wear visible on the outside. The inside, however, was free of surface irregularities. Using these tubings in a roller pump led to a remarkable increase in circuit temperature (PVC: +12.0°C, silicone +2.9°C). Kinking or suction on the device caused the expected dramatic flow reduction (as assessed by direct measurement) while the roller pump display continued to show the preset flow. The roller pump is therefore not able to reliably determine the true flow rate. Conclusion: Roller pumps with silicone tubing but not PVC tubing may be used for running ECMO circuits. Silicone tubing may endure the roller pump shear forces for up to 1 week. Thus, repeated tubing repositioning may be a solution. Circuit heating and substantial limitations in flow detection should increase attention if clinical use in situations of crisis is considered.


2006 ◽  
Vol 20 (16) ◽  
pp. 3485-3501 ◽  
Author(s):  
Ali A. Assani ◽  
Émilie Stichelbout ◽  
André G. Roy ◽  
François Petit

Author(s):  
Carlos Moreno ◽  
Kiran Bhaganagar

Patient specific simulations of a single patient based on an accurate representation of the plaque in a diseased coronary artery with 35% stenosis are performed to understand the effect of inlet forcing frequency and amplitude on the wall shear stress (WSS). Numerical simulations are performed with unsteady flow conditions in a laminar regime. The results have revealed that at low amplitudes, WSS is insensitive to forcing frequency and is it in phase with Q. The maximum WSS is observed at the proximal region of the stenosis, and WSS has highest negative values at the peak location of the stenosis. For higher pulsatile amplitude (a > 1.0), WSS exhibits a strong sensitivity with forcing frequencies. At higher forcing frequency the WSS exhibits nonlinear response to the inlet forcing frequency. Furthermore, significant differences in the mean velocity profile are observed during maximum and minimum volumetric flow rates.


Author(s):  
Yandong Gu ◽  
Ji Pei ◽  
Shouqi Yuan ◽  
Jinfeng Zhang ◽  
Ernst Nikolajew ◽  
...  

The volute casing used in centrifugal pumps is efficient for the transformation of kinetic energy into pressure energy, however, its asymmetric hydraulic design makes the flow in diffuser-discharge-channel (DDC) inhomogeneous, resulting in unsatisfactory flow patterns. In this study, the unsteady numerical simulations are carried out to investigate the transient flow characteristics in DDC. The accuracy of numerical results is found to agree well with experimental performance and pressure fluctuations. It is observed that the flow in DDC is significantly uneven. At the elbow of DDC, the static pressure on the volute left side (VL) is larger than the volute right side (VR) due to the flow impact and flow separation respectively. Thereby, this high-pressure gradient induces the secondary flow on the cross sections of DDC. Further, there is an obvious dependency of pressure fluctuations in the discharge pipe on the strong interaction between the impeller and tongue, in which four small peaks and four large peaks can be observed. At each moment, the pressure on VL gradually decreases from the inlet of discharge pipe to the pump outlet, while it increases on VR, finally, two sides tend to be the same. The pressure fluctuation intensity gradually becomes equivalent-distributed. In particular, it should be noticed that the energy loss in the diffuser part is larger than the discharge pipe, which requires a redesign concerning hydraulic performance. This study can help to better understand the transient flow characteristics and provide guidance for reducing flow loss in the volute casing.


2020 ◽  
Vol 8 (2) ◽  
pp. 10-14
Author(s):  
S.S. Vasyliv ◽  
◽  
V.S. Zhdanov ◽  
M.V. Yevseyenko ◽  
◽  
...  

The problem of implementing the detonation mode of fuel combustion in thermal propulsion systems has been widely studied last decade. There are many works on fundamental and applied research on pulsating detonation. Solid propellant detonation engines can develop significant forces for a short time at low structural masses, and therefore they are ideal for auxiliary systems for the removal of separated rocket parts. In addition, detonation processes can be used to create control forces for correcting the trajectory of aircraft. All these facts determine the relevance of the area of work. For studying detonation installations, it is necessary to create test stands, but the design of test installations is an urgent and complex optimization problem. It is advisable to solve this problem with the help of computer simulation. In the existing experimental methods, for designing, it is necessary to determine in advance the geometric parameters of receivers and pipelines that provide the necessary gas consumption for firing tests of detonation rocket engines. The work is devoted to the development of a method for determining the flow characteristics of a receiver with a pipeline of complex configuration based on the constructed model of the stand. Based on the initial data, a computer simulation of the air leakage process from the receiver was carried out, for which the Solid Works software package was used. The places of pressure drop, maximum flow rate, and air mass flow are determined. The low value of the flow rate factor is due to the complex configuration of the pipeline with numerous bends and two bellows. Comparison of calculation results with experimental data was held. The difference between the experimental and calculated values does not exceed 3.6%. The obtained information is used to select the required value of the oxidizer excess coefficient during firing tests of detonation rocket engine models. Keywords: flow rate, gas leakage, receiver, model.


1984 ◽  
Vol 61 (9) ◽  
pp. 786
Author(s):  
Pierre Chaignon ◽  
Jean-Pierre Caire ◽  
Patrick Ozil

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
J. S. Chen ◽  
R. T. Wang

This study examines wave attenuation and power flow characteristics of sandwich beams with internal absorbers. Two types of absorbing systems embedded in the core are considered, namely, a conventional spring-mass-dashpot system having a mass with a spring and a dashpot in parallel, and a relaxation system containing an additional relaxation spring added in series with the dashpot. Analytical continuum models used for interpreting the attenuation behavior of sandwich structures are presented. Through the analysis of the power flowing into the structure, the correlation of wave attenuation and energy blockage is revealed. The reduction in the power flow indicates that some amount of energy produced by the external force can be effectively obstructed by internal absorbers. The effects of parameters on peak attenuation, bandwidth, and power flow are also studied.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 919
Author(s):  
Jia Li ◽  
Xin Wang ◽  
Yue Wang ◽  
Wancheng Wang ◽  
Baibing Chen ◽  
...  

Aero-fuel centrifugal pumps are important power plants in aero-engines. Unlike most of the existing centrifugal pumps, a combination impeller is integrated with the pump to improve performance. First, the critical geometrical parameters of the combination impeller and volute are given. Then, the effects of the combination impeller on the flow characteristics of the impeller and volute are clarified by comparing simulation results with that of the conventional impeller, where the effectiveness of the selected numerical method is validated by an acceptable agreement between simulation and experiment. Finally, the experiment is set to test the external performance of the studied pump. A significant feature of this study is that the flow characteristics are significantly ameliorated by reducing the flow losses that emerged in the impeller inlet, impeller outlet, and volute tongue. Correspondingly, the head and efficiency of a combination impeller are higher with comparison to a conventional impeller. Consequently, it is a promising approach in ameliorating the flow field and improving external performance by applying a combination impeller to an aero-fuel centrifugal pump.


Sign in / Sign up

Export Citation Format

Share Document