New Approach for Placing Wind Turbines in a Wind Farm Using Genetic Algorithm

2014 ◽  
Vol 38 (6) ◽  
pp. 633-642 ◽  
Author(s):  
C. BalaKrishna Moorthy ◽  
M.K. Deshmukh ◽  
Darshana Mukherejee
Author(s):  
Xiaomin Chen ◽  
Ramesh Agarwal

In this paper, we consider the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal–Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally place the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed.


2021 ◽  
Vol 297 ◽  
pp. 01038
Author(s):  
Abdelouahad Bellat ◽  
Khalifa Mansouri ◽  
Abdelhadi Raihani

The optimization of the size of wind farms is little studied in the literature. The objective of this study is to renew the existing wind farms by inserting new wind turbines with different characteristics. To evaluate our approach, a genetic algorithm was chosen to optimize our objective function, which aims to maximize the power of the wind farm studied at a reasonable cost, the Jensen wake model was chosen for the power calculation of the park. The results obtained from the simulation on the Horns-rev wind farm showed a significant increase in energy and a relatively reasonable cost of energy.


Author(s):  
Anshul Mittal ◽  
Lafayette K. Taylor

Optimizing the placement of the wind turbines in a wind farm to achieve optimal performance is an active area of research, with numerous research studies being published every year. Typically, the area available for the wind farm is divided into cells (a cell may/may not contain a wind turbine) and an optimization algorithm is used. In this study, the effect of the cell size on the optimal layout is being investigated by reducing it from five rotor diameter (previous studies) to 1/40 rotor diameter (present study). A code is developed for optimizing the placement of wind turbines in large wind farms. The objective is to minimize the cost per unit power produced from the wind farm. A genetic algorithm is employed for the optimization. The velocity deficits in the wake of the wind turbines are estimated using a simple wake model. The code is verified using the results from the previous studies. Results are obtained for three different wind regimes: (1) Constant wind speed and fixed wind direction, (2) constant wind speed and variable wind direction, and (3) variable wind speed and variable wind direction. Cost per unit power is reduced by 11.7% for Case 1, 11.8% for Case 2, and 15.9% for Case 3 for results obtained in this study. The advantages/benefits of a refined grid spacing of 1/40 rotor diameter (1 m) are evident and are discussed. To get an understanding of the sensitivity of the power produced to the wake model, optimized layout is obtained for the Case 1 using a different wake model.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4403 ◽  
Author(s):  
Yang ◽  
Cho

The optimal layout of wind turbines is an important factor in the wind farm design process, and various attempts have been made to derive optimal deployment results. For this purpose, many approaches to optimize the layout of turbines using various optimization algorithms have been developed and applied across various studies. Among these methods, the most widely used optimization approach is the genetic algorithm, but the genetic algorithm handles many independent variables and requires a large amount of computation time. A simulated annealing algorithm is also a representative optimization algorithm, and the simulation process is similar to the wind turbine layout process. However, despite its usefulness, it has not been widely applied to the wind farm layout optimization problem. In this study, a wind farm layout optimization method was developed based on simulated annealing, and the performance of the algorithm was evaluated by comparing it to those of previous studies under three wind scenarios; likewise, the applicability was examined. A regular layout and optimal number of wind turbines, never before observed in previous studies, were obtained and they demonstrated the best fitness values for all the three considered scenarios. The results indicate that the simulated annealing (SA) algorithm can be successfully applied to the wind farm layout optimization problem.


Sign in / Sign up

Export Citation Format

Share Document