scholarly journals A conserved arginine in NS5 binds genomic 3’stem-loop RNA for primer-independent initiation of flavivirus RNA-replication

RNA ◽  
2021 ◽  
pp. rna.078949.121
Author(s):  
Sai Wang ◽  
Kitt Wing Ki Chan ◽  
Min Jie Alvin Tan ◽  
Charlotte Flory ◽  
Dahai Luo ◽  
...  

Replication of the RNA genome of flaviviruses without a primer involves RNA-protein interactions that have been shown to include the recognition of the stem-loop A (SLA) in the 5’ untranslated region (UTR) by the non-structural protein 5 (NS5). We show that DENV2 NS5 arginine 888, located within the C-terminal 18 residues, is completely conserved in all flaviviruses and interacts specifically with the top-loop of 3’SL in the 3’UTR which contains the pentanucleotide 5’-CACAG-3’ previously shown to be critical for flavivirus RNA replication. We present virological and biochemical data showing the importance of this Arg 888 in virus viability and de novo initiation of RNA polymerase activity in vitro. Based on our binding studies, we hypothesize that ternary complex formation of NS5 with 3’SL, followed by dimerization, leads to the formation of the de novo initiation complex that could be regulated by the reversible zipping and unzipping of cis-acting RNA elements.

2008 ◽  
Vol 83 (2) ◽  
pp. 993-1008 ◽  
Author(s):  
María F. Lodeiro ◽  
Claudia V. Filomatori ◽  
Andrea V. Gamarnik

ABSTRACT The 5′ untranslated region (5′UTR) of the dengue virus (DENV) genome contains two defined elements essential for viral replication. At the 5′ end, a large stem-loop (SLA) structure functions as the promoter for viral polymerase activity. Next to the SLA, there is a short stem-loop that contains a cyclization sequence known as the 5′ upstream AUG region (5′UAR). Here, we analyzed the secondary structure of the SLA in solution and the structural requirements of this element for viral replication. Using infectious DENV clones, viral replicons, and in vitro polymerase assays, we defined two helical regions, a side stem-loop, a top loop, and a U bulge within SLA as crucial elements for viral replication. The determinants for SLA-polymerase recognition were found to be common in different DENV serotypes. In addition, structural elements within the SLA required for DENV RNA replication were also conserved among different mosquito- and tick-borne flavivirus genomes, suggesting possible common strategies for polymerase-promoter recognition in flaviviruses. Furthermore, a conserved oligo(U) track present downstream of the SLA was found to modulate RNA synthesis in transfected cells. In vitro polymerase assays indicated that a sequence of at least 10 residues following the SLA, upstream of the 5′UAR, was necessary for efficient RNA synthesis using the viral 3′UTR as template.


2006 ◽  
Vol 87 (9) ◽  
pp. 2621-2630 ◽  
Author(s):  
Jacques Rohayem ◽  
Katrin Jäger ◽  
Ivonne Robel ◽  
Ulrike Scheffler ◽  
Achim Temme ◽  
...  

Norovirus (NV) 3Dpol is a non-structural protein predicted to play an essential role in the replication of the NV genome. In this study, the characteristics of NV 3Dpol activity and initiation of RNA synthesis have been examined in vitro. Recombinant NV 3Dpol, as well as a 3Dpol active-site mutant were expressed in Escherichia coli and purified. NV 3Dpol was able to synthesize RNA in vitro and displayed flexibility with respect to the use of Mg2+ or Mn2+ as a cofactor. NV 3Dpol yielded two different products when incubated with synthetic RNA in vitro: (i) a double-stranded RNA consisting of two single strands of opposite polarity or (ii) the single-stranded RNA template labelled at its 3′ terminus by terminal transferase activity. Initiation of RNA synthesis occurred de novo rather than by back-priming, as evidenced by the fact that the two strands of the double-stranded RNA product could be separated, and by dissociation in time-course analysis of terminal transferase and RNA synthesis activities. In addition, RNA synthesis was not affected by blocking of the 3′ terminus of the RNA template by a chain terminator, sustaining de novo initiation of RNA synthesis. NV 3Dpol displays in vitro properties characteristic of RNA-dependent RNA polymerases, allowing the implementation of this in vitro enzymic assay for the development and validation of antiviral drugs against NV, a so far non-cultivated virus and an important human pathogen.


1984 ◽  
Vol 4 (1) ◽  
pp. 188-194
Author(s):  
B S Ben-Tzvi ◽  
Y Koltin ◽  
M Mevarech ◽  
A Tamarkin

RNA polymerase activity is associated with the double-stranded RNA virions of Ustilago maydis. The reaction products of the polymerase activity are single-stranded RNA molecules. The RNA molecules synthesized are homologous to the three classes of double-stranded RNA molecules that typify the viral genome. The single-stranded RNA synthesized is released from the virions. The molecular weight of the single-stranded RNA transcripts is about half the size of the double-stranded RNA segments, and thus, it appears that in the in vitro reaction, full-length transcripts can be obtained.


2020 ◽  
Author(s):  
Sharon Spizzichino ◽  
Dalila Boi ◽  
Giovanna Boumis ◽  
Roberta Lucchi ◽  
Francesca R. Liberati ◽  
...  

ABSTRACTDe novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: thymidylate synthase (TYMS), serine hydroxymethyltransferase (SHMT) and dihydrofolate reductase (DHFR), targets of widely used chemotherapeutics such as antifolates and 5-fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex (dTMP-SC). We report the intracellular dynamics of the complex in lung cancer cells by in situ proximity ligation assay, showing that it is also detected in the cytoplasm. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human TYMS and DHFR. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionary selected in eukaryotes to optimize protein-protein interactions. Lastly, our results on the activity of the complete thymidylate cycle in vitro, provide a useful tool to develop drugs targeting the entire complex instead of the individual components.


2020 ◽  
Author(s):  
Min Wang ◽  
Fei Ye ◽  
Jiaqi Su ◽  
Jingru Zhao ◽  
Bin Yuan ◽  
...  

Abstract The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously designated as 2019-nCoV) outbreak has caused global concern1. Currently, there are no clinically approved specific drugs or vaccines available for this virus. The viral polymerase is a promising target for developing broad- spectrum antiviral drugs. Here, based on the highly similar structure of SARS- CoV non-structural protein 12 (nsp12) polymerase subunit2, we applied virtual screen for the available compounds, including both the FDA-approved and under- clinic drugs, to identify potential antiviral molecules against SARS-CoV-2. We found two drugs, the clinically approved anti-fungi drug Caspofungin Acetate (Cancidas) and the oncolytic peptide LTX-315, can bind SARS-CoV-2 nsp12 protein to block the polymerase activity in vitro. Further live virus assay revealed that both Caspofungin Acetate and LTX-315 can effectively inhibit SARS-CoV-2 replication in vero cells. These findings present promising drug candidates for treatment of related diseases and would also stimulate the development of pan- coronavirus antiviral agents.Authors Min Wang, Fei Ye, Jiaqi Su, Jingru Zhao, and Bin Yuan contributed equally to this work.


1986 ◽  
Vol 6 (2) ◽  
pp. 404-410 ◽  
Author(s):  
T Fujimura ◽  
R B Wickner

pet18 mutations in Saccharomyces cerevisiae confer on the cell the inability to maintain either L-A or M double-stranded RNAs (dsRNAs) at the nonpermissive temperature. In in vitro experiments, we examined the effects of pet18 mutations on the RNA-dependent RNA polymerase activity associated with virus-like particles (VLPs). pet18 mutations caused thermolabile RNA polymerase activity of L-A VLPs, and this thermolability was found to be due to the instability of the L-A VLP structure. The pet18 mutations did not affect RNA polymerase activity of M VLPs. Furthermore, the temperature sensitivity of wild-type L-A RNA polymerase differed substantially from that of M RNA polymerase. From these results, and from other genetic and biochemical lines of evidence which suggest that replication of M dsRNA requires the presence of L-A dsRNA, we propose that the primary effect of the pet18 mutation is on the L-A VLP structure and that the inability of pet18 mutants to maintain M dsRNA comes from the loss of L-A dsRNA.


Science ◽  
2020 ◽  
Vol 368 (6487) ◽  
pp. eaay0688 ◽  
Author(s):  
Nimit Jain ◽  
Lucas R. Blauch ◽  
Michal R. Szymanski ◽  
Rhiju Das ◽  
Sindy K. Y. Tang ◽  
...  

Transcription polymerases can exhibit an unusual mode of regenerating certain RNA templates from RNA, yielding systems that can replicate and evolve with RNA as the information carrier. Two classes of pathogenic RNAs (hepatitis delta virus in animals and viroids in plants) are copied by host transcription polymerases. Using in vitro RNA replication by the transcription polymerase of T7 bacteriophage as an experimental model, we identify hundreds of new replicating RNAs, define three mechanistic hallmarks of replication (subterminal de novo initiation, RNA shape-shifting, and interrupted rolling-circle synthesis), and describe emergence from DNA seeds as a mechanism for the origin of novel RNA replicons. These results inform models for the origins and replication of naturally occurring RNA genetic elements and suggest a means by which diverse RNA populations could be propagated as hereditary material in cellular contexts.


Open Biology ◽  
2016 ◽  
Vol 6 (7) ◽  
pp. 160078 ◽  
Author(s):  
Tim Schulte ◽  
Lifeng Liu ◽  
Marc D. Panas ◽  
Bastian Thaa ◽  
Nicole Dickson ◽  
...  

Recent findings have highlighted the role of the Old World alphavirus non-structural protein 3 (nsP3) as a host defence modulator that functions by disrupting stress granules, subcellular phase-dense RNA/protein structures formed upon environmental stress. This disruption mechanism was largely explained through nsP3-mediated recruitment of the host G3BP protein via two tandem FGDF motifs. Here, we present the 1.9 Å resolution crystal structure of the NTF2-like domain of G3BP-1 in complex with a 25-residue peptide derived from Semliki Forest virus nsP3 (nsP3-25). The structure reveals a poly-complex of G3BP-1 dimers interconnected through the FGDF motifs in nsP3-25. Although in vitro and in vivo binding studies revealed a hierarchical interaction of the two FGDF motifs with G3BP-1, viral growth curves clearly demonstrated that two intact FGDF motifs are required for efficient viral replication. Chikungunya virus nsP3 also binds G3BP dimers via a hierarchical interaction, which was found to be critical for viral replication. These results highlight a conserved molecular mechanism in host cell modulation.


1984 ◽  
Vol 4 (1) ◽  
pp. 188-194 ◽  
Author(s):  
B S Ben-Tzvi ◽  
Y Koltin ◽  
M Mevarech ◽  
A Tamarkin

RNA polymerase activity is associated with the double-stranded RNA virions of Ustilago maydis. The reaction products of the polymerase activity are single-stranded RNA molecules. The RNA molecules synthesized are homologous to the three classes of double-stranded RNA molecules that typify the viral genome. The single-stranded RNA synthesized is released from the virions. The molecular weight of the single-stranded RNA transcripts is about half the size of the double-stranded RNA segments, and thus, it appears that in the in vitro reaction, full-length transcripts can be obtained.


2001 ◽  
Vol 75 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Kevin Dalton ◽  
Rosa Casais ◽  
Kathy Shaw ◽  
Kathleen Stirrups ◽  
Sharon Evans ◽  
...  

ABSTRACT The parts of the RNA genome of infectious bronchitis virus (IBV) required for replication and packaging of the RNA were investigated using deletion mutagenesis of a defective RNA (D-RNA) CD-61 (6.1 kb) containing a chloramphenicol acetyltransferase reporter gene. A D-RNA with the first 544, but not as few as 338, nucleotides (nt) of the 5′ terminus was replicated; the 5′ untranslated region (UTR) comprises 528 nt. Region I of the 3′ UTR, adjacent to the nucleocapsid protein gene, comprised 212 nt and could be removed without impairment of replication or packaging of D-RNAs. A D-RNA with the final 338 nt, including the 293 nt in the highly conserved region II of the 3′ UTR, was replicated. Thus, the 5′-terminal 544 nt and 3′-terminal 338 nt contained the necessary signals for RNA replication. Phylogenetic analysis of 19 strains of IBV and 3 strains of turkey coronavirus predicted a conserved stem-loop structure at the 5′ end of region II of the 3′ UTR. Removal of the predicted stem-loop structure abolished replication of the D-RNAs. D-RNAs in which replicase gene 1b-derived sequences had been removed or replaced with all the downstream genes were replicated well but were rescued poorly, suggesting inefficient packaging. However, no specific part of the 1b gene was required for efficient packaging.


Sign in / Sign up

Export Citation Format

Share Document