scholarly journals THE OLVIOS, RETHIS AND INACHOS DRAINAGE SYSTEM EVOLUTION AND HUMAN ACTIVITIES INFLUNCE OF THEIR FUTURE EVOLUTION

2017 ◽  
Vol 43 (2) ◽  
pp. 548 ◽  
Author(s):  
Th. Anagnostoudi ◽  
S. Papadopoulou ◽  
D. Ktenas ◽  
E. Gkadri ◽  
I. Pyliotis ◽  
...  

Olvios, Rethis and Inachos Rivers are multistory drainage systems that occur in Northern Peloponnesus, and at the present day they have and a reversed, North to South, flow element. Dervenios, Skoupeikos and Fonissa Rivers are the misfit streams of Olvios and revealed as juvenile streams and discharge to the Corinth gulf. Agiorgitikos River is the misfit stream of Rethis River and Seliandros River is the juvenile stream. Asopos, Nemeas and Rachiani Rives are the misfit streams of Inachos River and they also discharge to the Corinth gulf. Asopos River characterized as re-established stream. Physical factors such as tectonic regime (active and inactive faults), lithology, erosion and distance from the source influenced the three drainage systems evolution and could be influence them also in the future. The increase of human activities both in their southern parts and in the distal parts close to the coast could be change the physical evolution of the studied drainages, producing a new wind gap in the coastal area and a lake or a lagoon backwards of the coastal area, destroying villages and towns.

Irriga ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 202
Author(s):  
Bruna Soares Xavier de Barros ◽  
Zacarias Xavier de Barros

A CULTURA DA CANA-DE-AÇÚCAR COMO FATOR DE RISCO PARA OS CÓRREGOS E AS NASCENTES  BRUNA SOARES XAVIER DE BARROS1 E ZACARIAS XAVIER DE BARROS2 Departamento de Engenharia Rural, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, SP, [email protected]ós-Doutoranda do Programa de Pós-Graduação - Energia na Agricultura, FCA/UNESP - Botucatu, SP. 2Professor Titular do Departamento de Engenharia Rural, FCA/UNESP - Botucatu, SP.  1 RESUMO O levantamento do uso e ocupação do solo tornou-se muito importante para se conhecer e determinar as principais culturas de uma região, pois a ação antrópica pode modificar profundamente as feições de uma paisagem nativa. Neste contexto, este trabalho visou analisar a ocupação do solo na bacia Fazenda Serra Negra, Botucatu-SP, no período de 1962 a 2014, no intuito de verificar a influência das diferentes culturas sobre as redes de drenagem e as nascentes na bacia. A bacia está situada entre as coordenadas de 22º 46’ 42” a 22º 48’ 12” de latitude S e 48º 24’ 04” a 48º 25’ 54” longitude Wgr, perfazendo uma área de 963,97 ha. O estudo possibilitou constatar que os córregos existentes em 1962 cederam espaços para o plantio da cana-de-açúcar restando apenas vestígios da rede de drenagem; pode-se também constatar que a várzea sofreu diminuição devido à construção de uma rede de drenos. Palavras-chave: Imagens aéreas; bacia hidrográfica; ocupação do solo.  BARROS, B. S. X.; BARROS, Z. X.SUGAR CANE GROWING AS A RISK FACTOR FOR STREAMS AND SPRINGS 2 ABSTRACT The survey of land use and occupation has become very important to know and determine the main crops of the region, because human activities can profoundly change the features of a native landscape. In this context, this study aimed to analyze land use in the Fazenda Serra Negra drainage basin, Botucatu, São Paulo, from 1962 to 2014, in order to investigate the influence of different cultures on the drainage systems and springs in the basin. This basin is located between coordinates 22º46’42” to 22°48’'12”S latitude and 48°24’04” to 48°25’54”W longitude, covering an area of 963.97 ha. Through this study, it was possible to see that the existing streams in 1962 gave room to sugarcane growing, leaving only traces of the drainage system; it can also be seen that the plain suffered a decrease due to the building of a drain network. Keywords: aerial images; hydrographic basin; land use.                                           


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 514
Author(s):  
Leonardo Bayas-Jiménez ◽  
F. Javier Martínez-Solano ◽  
Pedro L. Iglesias-Rey ◽  
Daniel Mora-Melia ◽  
Vicente S. Fuertes-Miquel

A problem for drainage systems managers is the increase in extreme rain events that are increasing in various parts of the world. Their occurrence produces hydraulic overload in the drainage system and consequently floods. Adapting the existing infrastructure to be able to receive extreme rains without generating consequences for cities’ inhabitants has become a necessity. This research shows a new way to improve drainage systems with minimal investment costs, using for this purpose a novel methodology that considers the inclusion of hydraulic control elements in the network, the installation of storm tanks and the replacement of pipes. The presented methodology uses the Storm Water Management Model for the hydraulic analysis of the network and a modified Genetic Algorithm to optimize the network. In this algorithm, called the Pseudo-Genetic Algorithm, the coding of the chromosomes is integral and has been used in previous studies of hydraulic optimization. This work evaluates the cost of the required infrastructure and the damage caused by floods to find the optimal solution. The main conclusion of this study is that the inclusion of hydraulic controls can reduce the cost of network rehabilitation and decrease flood levels.


2021 ◽  
Vol 13 (13) ◽  
pp. 7189
Author(s):  
Beniamino Russo ◽  
Manuel Gómez Valentín ◽  
Jackson Tellez-Álvarez

Urban drainage networks should be designed and operated preferably under open channel flow conditions without flux return, backwater, or overflows. In the case of extreme storm events, urban pluvial flooding is generated by the excess of surface runoff that could not be conveyed by pressurized sewer pipes, due to its limited capacity or, many times, due to the poor efficiency of surface drainage systems to collect uncontrolled overland flow. Generally, the hydraulic design of sewer systems is addressed more for underground networks, neglecting the surface drainage system, although inadequate inlet spacings and locations can cause dangerous flooding with relevant socio-economic impacts and the interruption of critical services and urban activities. Several experimental and numerical studies carried out at the Technical University of Catalonia (UPC) and other research institutions demonstrated that the hydraulic efficiency of inlets can be very low under critical conditions (e.g., high circulating overland flow on steep areas). In these cases, the hydraulic efficiency of conventional grated inlets and continuous transverse elements can be around 10–20%. Their hydraulic capacity, expressed in terms of discharge coefficients, shows the same criticism with values quite far from those that are usually used in several project practice phases. The grate clogging phenomenon and more intense storm events produced by climate change could further reduce the inlets’ performance. In this context, in order to improve the flood urban resilience of our cities, the relevance of the hydraulic behavior of surface drainage systems is clear.


Soil Research ◽  
2008 ◽  
Vol 46 (7) ◽  
pp. 542 ◽  
Author(s):  
J. A. Hanly ◽  
M. J. Hedley ◽  
D. J. Horne

Research was conducted in the Manawatu region, New Zealand, to investigate the ability of Papakai tephra to remove phosphorus (P) from dairy farm mole and pipe drainage waters. The capacity of this tephra to adsorb P was quantified in the laboratory using a series of column experiments and was further evaluated in a field study. In a column experiment, the P adsorption capabilities of 2 particle size factions (0.25–1, 1–2 mm) of Papakai tephra were compared with that of an Allophanic Soil (Patua soil) known to have high P adsorption properties. The experiment used a synthetic P influent solution (12 mg P/L) and a solution residence time in the columns of c. 35 min. By the end of the experiment, the 0.25–1 mm tephra removed an estimated 2.6 mg P/g tephra at an average P removal efficiency of 86%. The 1–2 mm tephra removed 1.6 mg P/g tephra at an average removal efficiency of 58%. In comparison, the Patua soil removed 3.1 mg P/g soil at a P removal efficiency of 86%. Although, the Patua soil was sieved to 1–2 mm, this size range consisted of aggregates of finer particles, which is likely to have contributed to this material having a higher P adsorbing capacity. A field study was established on a Pallic Soil, under grazed dairy pastures, to compare drainage water P concentrations from standard mole and pipe drainage systems (control) and drainage systems incorporating Papakai tephra. The 2 tephra treatments involved filling mole channels with 1–4 mm tephra (Mole-fill treatment) or filling the trench above intercepting drainage pipes with ‘as received’ tephra (Back-fill treatment). Over an entire winter drainage season, the quantity of total P (TP) lost from the control treatment drainage system was 0.30 kg P/ha. The average TP losses for the Mole-fill and the Back-fill treatments were 45% and 47% lower than the control treatment, respectively.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 933
Author(s):  
Harald G. Dill ◽  
Andrei Buzatu ◽  
Sorin-Ionut Balaban

A holistic-modular approach has been taken to study the evolution of three straight to low-sinuosity drainage systems (=SSS) in an uplifted basement block of the Central European Variscides. The development of the SSS is described by means of a quadripartite model. (1) The geological framework of the SSS: Forming the lithological and structural features in the bedrock as a result of different temperature, pressure and dynamic-metamorphic processes. (2) Prestage of SSS: Forming the paleo-landscape with a stable fluvial regime as a starting point for the SSS. (3) Proto-SSS: Transition into the metastable fluvial regime of the SSS. (4) Modern SSS: Operation of the metastable fluvial regime Tectonics plays a dual role. Late Paleozoic fold tectonic creates the basis for the studied SSS and has a guiding effect on the development of morphotectonic units during the Neogene and Quaternary. Late Cenozoic fault tectonics triggered the SSS to incise into the Paleozoic basement. The change in the bedrock lithology has an impact on the fluvial and colluvial sediments as well as their landforms. The latter reflects a conspicuous modification: straight drainage system ⇒ higher sinuosity and paired terraces ⇒ hillwash plains. Climate change has an indirect effect controlling via the bedrock the intensity of mechanical and chemical weathering. The impact on the development of the SSS can be assessed as follows: Tectonics >> climate ≅ bedrock lithology. The three parameters cause a facies zonation: (1) wide-and-shallow valley (Miocene), (2) wide-angle V-shaped valley (Plio-Pleistocene), (3) acute-angle V-shaped valley (Pleistocene), (4) V-shaped to U-shaped valleys (Pleistocene-Holocene). Numerical data relevant for the hydrographic studies of the SSS are determined in each reference area: (1) Quantification of fluvial and colluvial deposits along the drainage system, (2) slope angles, (3) degree of sinuosity as a function of river facies, (4) grain size distribution, (5) grain morphological categorization, (6) grain orientation (“situmetry”), (7) channel density, (8) channel/floodplain ratios. Thermodynamic computations (Eh, pH, concentration of solubles) are made to constrain the paleoclimatic regime during formation of the SSS. The current model of the SSS is restricted in its application to the basement of the Variscan-Type orogens, to an intermediate crustal maturity state.


GeoEco ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 76
Author(s):  
Joyce Kumaat ◽  
Kalvin S Andaria ◽  
Hilda F Oroh

<p><em>This study aims to determine the potential of coastal areas in ecotourism development through a spatial approach using Scenic Beauty Estimation (SBE) analysis. The benefits related to the use of geographic information technology will conceptually provide the right solution for planning and regional development in ecotourism development.  Activities carried out include collecting data in the field related to physical and non-physical factors in coastal areas through surveys and mapping, then analyzing data in a Scenic Beauty Estimation (SBE) and designing geographic information systems in the form of mapping on 1) physical, artistic potential, and tourist activities, 2) accessibility (transportation), 3) information and accommodation services.  The contribution of this research is to provide information and input for the government to facilitate and determine the planning and development of ecotourism in the coastal area of Talaud Regency on the island of Sara. It can increase regional or regional income, participation, and support in managing and utilizing coastal regions.</em></p>


2012 ◽  
Vol 99 (10) ◽  
pp. 1726-1735 ◽  
Author(s):  
Liang-Liang Yue ◽  
Gao Chen ◽  
Wei-Bang Sun ◽  
Hang Sun

2012 ◽  
Vol 452-453 ◽  
pp. 538-542 ◽  
Author(s):  
Abdelkader Djehiche ◽  
Rekia Amieur ◽  
Mustafa Gafsi

This paper presents an experimental study of a homogenous earth dam. The work is focused to the search of solutions of problems encountered in the earth dams after their construction. One of the major problems is the choice and design of systems of drainage. The effective drainage system to prevent harmful accumulations of excess water is one of the most important roles of dams. Efficient drainage systems can improve the safety of earth dams. The paper presented herein reports the results obtained from the experimental study. Empiric relations have been obtained which can be help in the control of the flow rate in the chimney drain of the earth dams on pervious foundation, which can increase safety earth dams


2018 ◽  
Vol 147 ◽  
pp. 03008
Author(s):  
Afifah Muhsinatu Mardiah ◽  
Cherish Nurul Ainy ◽  
Mohammad Bagus ◽  
Dhemi Harlan

Institut Teknologi Bandung (ITB), Ganesha Campus, Indonesia, has an area of 28.86 hectares. The campus is located in Bandung. Starting from 2012, new buildings were constructed within the area, reducing the area of permeable surface significantly. In the past few years, there were several excess run off incidents in the campus. The insufficient area of permeable surface as well as the inadequate capacity of the drainage system contributes to the excess surface run off. The drainage system has only two outlets. Moreover, in some areas, the drainage systems are disconnected. Thus, most the surface run off are stored within the drainage system. The purpose of this study is to evaluate the effectiveness of infiltration wells for reducing the local excess run off in ITB. Precipitation data and drained service area are used to estimate the design discharge from each building in ITB. In order to avoid the excess surface run off of certain locations in ITB, then the infiltration wells are proposed to balance the area of impermeable surface. The effectiveness of the infiltration wells are evaluated by assessing their number to their contribution in reducing the excess surface runs off.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 626 ◽  
Author(s):  
Łukasz Bąk ◽  
Bartosz Szeląg ◽  
Aleksandra Sałata ◽  
Jan Studziński

The processes that affect sediment quality in drainage systems show high dynamics and complexity. However, relatively little information is available on the influence of both catchment characteristics and meteorological conditions on sediment chemical properties, as those issues have not been widely explored in research studies. This paper reports the results of investigations into the content of selected heavy metals (Ni, Mn, Co, Zn, Cu, Pb, and Fe) and polycyclic aromatic hydrocarbons (PAHs) in sediments from the stormwater drainage systems of four catchments located in the city of Kielce, Poland. The influence of selected physico-geographical catchment characteristics and atmospheric conditions on pollutant concentrations in the sediments was also analyzed. Based on the results obtained, statistical models for forecasting the quality of stormwater sediments were developed using artificial neural networks (multilayer perceptron neural networks). The analyses showed varied impacts of catchment characteristics and atmospheric conditions on the chemical composition of sediments. The concentration of heavy metals in sediments was far more affected by catchment characteristics (land use, length of the drainage system) than atmospheric conditions. Conversely, the content of PAHs in sediments was predominantly affected by atmospheric conditions prevailing in the catchment. The multilayer perceptron models developed for this study had satisfactory predictive abilities; the mean absolute error of the forecast (Ni, Mn, Zn, Cu, and Pb) did not exceed 21%. Hence, the models show great potential, as they could be applied to, for example, spatial planning for which environmental aspects (i.e., sediment quality in the stormwater drainage systems) are accounted.


Sign in / Sign up

Export Citation Format

Share Document