scholarly journals Assessing the economic impact of climate change in the small-scale aquaculture industry of Ghana, West Africa

2019 ◽  
Vol 1 ◽  
pp. 26 ◽  
Author(s):  
Berchie Asiedu ◽  
Dickson Malcolm ◽  
Seidu Iddrisu

Background: Aquaculture in Ghana is very profitable, but faces sustainability challenges. This paper assessed the impact pathways by which climate change affects the production and profitability of small-scale aquaculture in Ghana. The study analyzed and compared the economic value of smallholder fish farms with and without the incidence of climatic parameters. Methods: Simple random sampling and purposive sampling techniques were used to select the study area and farms. A total of 30 farmers were interviewed using a questionnaire-based interview. Additionally, using document analysis, observation, and data on farms’ production input and output values, the economic impact of climate change on fish farms was assessed. Results: Extreme temperatures, erratic rainfall, floods, drought, storm and erosion are prevalent in fish farms. Available data shows a decrease of 53.4% of small-scale revenue, a 6.9% reduction in small-scale aquaculture value from GH¢ 83,000 to GH¢ 120,000 reducing fish supply by 25%. The findings indicate that the profitability, economic value, and livelihoods of the small-scale aquaculture industry is greatly affected by changes in climate. The incidence of floods, drought, erratic rainfall, erosion, and extreme temperature synergistically induce poverty. The implication on the livelihoods of fish farming households is very alarming and poses a serious threat to food security in the country. Conclusion: Based on the findings, this study concludes that; floods, rainfall temperature, and drought are the major climatic factors affecting the profitability and sustainability of the pond aquaculture industry. The preliminary recommendation is that there is an urgent need to map out flood-free zones close to perennial water bodies to overcome floods and droughts. Planting trees around ponds to create a micro-ecologies ideal for fish culture and also the construction of water storage facilities and proper dyke design would overcome drought and erosion issues. The adaptive capacity of fish-farmers must be built.

2018 ◽  
Vol 1 ◽  
pp. 26
Author(s):  
Berchie Asiedu ◽  
Dickson Malcolm ◽  
Seidu Iddrisu

Background: Aquaculture in Ghana is very profitable, but faces sustainability challenges. This paper assessed the impact pathways by which climate change affects the production and profitability of small-scale aquaculture in Ghana. The study analyzed and compared the economic value of smallholder fish farms with and without the incidence of climatic parameters. Methods: Simple random sampling and purposive sampling techniques were used to select the study area and farms. A total of 30 farmers were interviewed using a questionnaire-based interview. Additionally, using document analysis, observation, and data on farms’ production input and output values, the economic impact of climate change on fish farms was assessed. Results: Extreme temperatures, erratic rainfall, floods, drought, storm and erosion are prevalent in fish farms. Available data shows a decrease of 53.4% of small-scale revenue, a 6.9% reduction in small-scale aquaculture value from GH¢ 1,200,000 to GH¢ 83,000, reducing fish supply by 25%. The findings indicate that the profitability, economic value, and livelihoods of the small-scale aquaculture industry is greatly affected by changes in climate. The incidence of floods, drought, erratic rainfall, erosion, and extreme temperature synergistically induce poverty. The implication on the livelihoods of fish farming households is very alarming and poses a serious threat to food security in the country. Conclusion: Based on the findings, this study concludes that; floods, rainfall temperature, and drought are the major climatic factors affecting the profitability and sustainability of the pond aquaculture industry. The preliminary recommendation is that there is an urgent need to map out flood-free zones close to perennial water bodies to overcome floods and droughts. Planting trees around ponds to create a micro-ecologies ideal for fish culture and also the construction of water storage facilities and proper dyke design would overcome drought and erosion issues. The adaptive capacity of fish-farmers must be built.


Author(s):  
Kenneth Ofori-Boateng ◽  
Baba Insah

Purpose – The study aimed at examining the current and future impact of climate change on cocoa production in West Africa. Design/methodology/approach – A translog production function based on crop yield response framework was used. A panel model was estimated using data drawn from cocoa-producing countries in West Africa. An in-sample simulation was used to determine the predictive power of the model. In addition, an out-sample simulation revealed the effect of future trends of temperature and precipitation on cocoa output. Findings – Temperature and precipitation play a considerable role in cocoa production in West Africa. It was established that extreme temperature adversely affected cocoa output in the sub-region. Furthermore, increasing temperature and declining precipitation trends will reduce cocoa output in the future. Practical implications – An important implication of this study is the recognition that lagging effects are the determinants of cocoa output and not coincident effects. This finds support from the agronomic point of view considering the gestation period of the cocoa crop. Originality/value – Although several studies have been carried out in this area, this study modeled and estimated the interacting effects of factors that influence cocoa production. This is closer to reality, as climatic factors and agricultural inputs combine to yield output.


2021 ◽  
Vol 4 (2) ◽  
pp. 159-169
Author(s):  
Eko Sumartono ◽  
Gita Mulyasari ◽  
Ketut Sukiyono

Bengkulu is said to be the center of the world's climate because of the influence of water conditions and the topography of the area where the rain cloud formation starts. The waters in Bengkulu Province become a meeting place for four ocean currents which eventually become an area where the evaporation process of forming rain clouds becomes the rainy or dry season and affects the world climate. Method to analyze descriptively, shows oldeman Classification and satellite rainfall estimation data is added. In relation to the Analysis of Potential Food Availability for the Coastal Areas of Bengkulu Province uses a quantifiable descriptive analysis method based. The results show that most are included in the Oldeman A1 climate zone, which means it is suitable for continuous rice but less production due to generally low radiation intensity throughout the year. In an effort to reduce or eliminate the impact of climate change on food crop production, it is necessary to suggest crop diversification, crop rotation, and the application of production enhancement technologies. Strategies in building food availability as a result of climate change are: First, develop food supplies originating from regional production and food reserves on a provincial scale. Second, Empowering small-scale food businesses which are the dominant characteristics of the agricultural economy, especially lowland rice and horticultural crops. Third, Increase technology dissemination and increase the capacity of farmers in adopting appropriate technology to increase crop productivity and business efficiency. Four, Promote the reduction of food loss through the use of food handling, processing and distribution technologies. 


2020 ◽  
pp. 78-110
Author(s):  
Yu. Rud ◽  
◽  
O. Zaloilo ◽  
L. Buchatsky ◽  
I. Hrytsyniak ◽  
...  

Purpose. As the climate change impacts freshwater and marine ecosystems, and rising ocean temperatures and acidification continue to this moment, our aim was to analyze the literature and summarize information on the development of fish infectious diseases in the light of global warming. Findings. Even a slight increase in temperature affects the life cycle, physiology, behavior, distribution and structure of populations of aquatic bioresources, especially fish. Recent studies show that some infectious diseases of fish spread much faster with increasing temperature. Climate change contributes to pathogens spread in both marine and freshwater areas. In particular, rising water temperatures can expand the range of diseases. Aquatic bioresources have high cumulative mortality from infectious diseases, and pathogens are rapidly progressing, and these phenomena may be powered by climate change, leading to the geographical spread of virulent pathogens to fisheries and aquaculture facilities, threatening much of global production and food security. The article presents data on the impact of climate change and global warming on aquaculture and fisheries. The list of the main pathogens of fish of various etiology in Ukraine, including viral, bacterial and parasitic diseases is presented. The impact of infectious agents on modern aquaculture is described and the main ideas about the possible long-term consequences of climate change for fish farms are given. Practical Value. The review may be useful for specialists in veterinary medicine, epizootology and ichthyopathology. Key words: climate change, infectious diseases of fish, pathogenesis.


Author(s):  
Opeyemi Gbenga ◽  
H. I. Opaluwa ◽  
Awarun Olabode ◽  
Olowogbayi Jonathan Ayodele

Aim: Agriculture entails majorly crop and animal production. Crop and Livestock production provide the major human caloric and nutrition intake. Assessing the impact of climate change on crop and livestock productivity, is therefore critical to maintaining food supply in the world and particularly in Nigeria. Different studies have yielded different results in other parts of the world, it is therefore, very important to examine the linkage between climate change and agricultural productivity in Nigeria. Study Design: The study utilized secondary data. The study utilize climate data from Nigerian Meteorology Station and Carbon emission, Crop and Livestock production data from FOASTAT. Place and Duration of Study: The study was carried in Nigeria and it covers the period between 1970-2016. Methodology: The data were used to estimate the empirical models. Data were analyzed using descriptive statistics, trend analysis, stationarity, Co-integration and Fully-Modified Least Squares regression. Results: The result of the research reveals that there is variation in the trend of the climatic factors examined and also variation in crop and livestock production over the period covered by the study in Nigeria. The finding also shows that rainfall, temperature and Carbon emission are the climatic factors that significantly affect crop and livestock production in Nigeria. Long term adverse impact of climate change on crop and livestock production index indicates threat to food availability to the country. Conclusion: The study concluded that climatic variables have significant effect on agricultural productivity in Nigeria. The study recommended the need to put in place measures that will reduce the negative effects of climate on agricultural production.


2017 ◽  
Vol 18 (4) ◽  
pp. 1680-1695
Author(s):  
AHMAD DWI SETYAWAN ◽  
JATNA SUPRIATNA ◽  
DEDY DARNAEDI ◽  
ROKHMATULOH ROKHMATULOH ◽  
SUTARNO SUTARNO ◽  
...  

Setyawan AD, Supriatna J, Darnaedi D, Rokhmatuloh, Sutarno, Sugiyarto, Nursamsi I, Komala WR, Pradan P. 2017. Impact of climate change on potential distribution of xero-epiphytic selaginellas (Selaginella involvens and S. repanda) in Southeast Asia. Biodiversitas 18: 1680-1695. Climate change is one of the greatest challenges for all life on earth, as it may become the dominant driver of changes in ecosystem services and biodiversity loss at the global level. Selaginella is a group of spike-mosses that seem easily affected by global warming (climate change) due to requiring water medium for fertilization. However, some species have been adapted to dry condition and may grow as epiphytes, such as S. involvens and S. repanda. Both species are commonly found in opposing a range of elevation. S. involvens is often found in high-altitude regions, whereas S. repanda is often found at lower-altitude regions. The difference in this altitudinal distributions is expected to limit redistribution mechanism of each species to adapt the climate change projections. This study model examines the potential geographic distribution of S. involvens and S. repanda under current climatic conditions and models the impact of projected climate change on their potential distribution. Future climate predictions are made with four detailed bioclimatic scenarios (i.e. RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) and three-time intervals (2030, 2050, 2080), which combine various climatic factors. In this modeling, it can be concluded that S. involvens and S. repanda can adapt to future climate change, and continue to be sustainable, although it is strongly influenced and shifting habitat distribution in some areas.


Ciencia Unemi ◽  
2015 ◽  
Vol 8 (16) ◽  
pp. 11
Author(s):  
Mario Armijos Suárez ◽  
Jose Macuy Calle ◽  
Elsa Mayorga Quinteros ◽  
Leslie Rodriguez Valencia ◽  
Monica Clavijo Basantes

La acuicultura en Ecuador es una gran fuente de empleo y estabilidad económica, por lo tanto es importante realizar un estudio que mida el impacto de la aplicación del Decreto N°1391 divulgado en el Registro oficial N°454 del 15 de Octubre de 2008, el mismo que trata de la regularización a la industria acuícola del camarón y el sector acuícola en general, tomando en consideración aspectos ambientales y económicos. Se ha considerado el caso de las granjas acuícolas más afectadas por la regularización, ubicadas en la provincia de El Oro, Ecuador. En esta investigación descriptiva se aplicó encuestas que luego del análisis evidenciaron cómo se manifiesta la aplicación del Decreto N°1391 en la realidad de las camaroneras de la provincia del Oro y cómo se presenta en su entorno. Se evidenció que el 76% de los productores de camarón tuvieron que asumir, con su propio capital, los rubros adicionales que conllevó los diferentes procesos para el cumplimiento del mencionado decreto ejecutivo. AbstractAquaculture in Ecuador is a significant source of employment and economic stability. Therefore, it is relevant to conduct a study to measure the impact of the application of Decree No. 1391 reported in the Official Register No. 454 of October 15, 2008. It is the same adjustment to the shrimp aquaculture industry and the aquaculture sector, in general, considering environmental and economic aspects. We have reviewed the case of fish farms most affected by the regulation, located in the province of El Oro, Ecuador. In this detailed research surveys, they showed that after analyzing how the application of Decree No. 1391 in the reality of shrimp El Oro Province manifested and how it has applied in their environment. It showed that 76% of shrimp farmers had to assume, with their capital, additional items that led to the different processes for the fulfillment of that executive order.


Author(s):  
Muhammad Mobeen ◽  
Haroon Ahmed ◽  
Fahad Ullah ◽  
Muhammad Omar Riaz ◽  
Irfan Mustafa ◽  
...  

Purpose Spatio-temporal variations in precipitation pattern of district Sargodha is one of the most significant researchable questions because of the massive reliance on rainfall for agricultural practice in the study area. The pattern of current rainfall in the study area is unexpectedly changed. The purpose of the present study is to examine the changing precipitation pattern and to link it with climate change. Design/methodology/approach The study was conducted by using rainfall data of the past 30 years collected from 8 meteorological stations around the study area. The averages of rainfall on monthly basis were temporally arranged, and the fluctuation trends were studied using GIS and statistics. The temporal data of rainfall were compared and contrasted with the precipitation normals of the study area from 1981to 2010. The rainfall deviation in the present study was calculated. The spatial pattern of rainfall was plotted by interpolating the eight points of Punjab around the study area for the first two decades, whereas the past decade was analysed by incorporating five more points of Tehsils in the existing eight. The spatial and statistical representation of data were examined by compare and contrast with the previous findings. Findings The rainfall in the study area showed remarkable changes in magnitude and spatiality. The rainfall in the district is on the rise, whereas the spatial pattern of rainfall is becoming more complex and anomalous in character. This paper provides convincing evidence about the impact of climate change on the magnitude and spatial patterns of precipitation in the study area. Practical implications It will be helpful for understanding the shifts in the rainfall pattern in future as well as for the preparation of response to the issue of climate change and its impacts. Originality/value The current manuscript, for the very first time, provided detailed insights about the precipitation pattern shifting during the last 30 years in district Sargodha, Punjab, Pakistan. Furthermore, agricultural sector would likely get severally affected because of seasonal changes in climatic factors like rainfall and have strong food security implications. The current findings will be useful to manage the climate change-related issues in Pakistan and helpful for the policy makers to design a coping strategy for climate change impacts.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 146 ◽  
Author(s):  
Stéphane Boyer ◽  
Bradley S. Case ◽  
Marie-Caroline Lefort ◽  
Benjamin R. Waterhouse ◽  
Stephen D. Wratten

Because ecological interactions are the first components of the ecosystem to be impacted by climate change, future forms of threatened-species and ecosystem management should aim at conserving complete, functioning communities rather than single charismatic species. A possible way forward is the deployment of ecosystem-scale translocation (EST), where above- and below-ground elements of a functioning terrestrial ecosystem (including vegetation and topsoil) are carefully collected and moved together. Small-scale attempts at such practice have been made for the purpose of ecological restoration. By moving larger subsets of functioning ecosystems from climatically unstable regions to more stable ones, EST could provide a practical means to conserve mature and complex ecosystems threatened by climate change. However, there are a number of challenges associated with EST in the context of climate change mitigation, in particular the choice of donor and receptor sites. With the aim of fostering discussion and debate about the EST concept, we  1) outline the possible promises and pitfalls of EST in mitigating the impact of climate change on terrestrial biodiversity and 2) use a GIS-based approach to illustrate how  potential source and receptor sites, where EST could be trialed and evaluated globally, could be identified.


Climate change is a result of the global increase in average air and ocean temperatures, and rising average sea levels. Livestock production and health are significantly vulnerable to the impact of climate change. Climate change has direct and indirect impacts on emerging and re-emerging animal diseases and zoonoses since it disrupts natural ecosystems and allows disease-causing pathogens to move into new areas where they may harm wildlife and domestic species, as well as humans. Climate change affects diseases and pest distributions, range prevalence, incidence, and seasonality but the degree of change remains highly uncertain. The occurrence and distribution of vector-borne diseases such as bluetongue, west Nile fever, rift valley fever, African horse sickness, etc. are closely associated with weather patterns and long-term climatic factors strongly influence the incidence of outbreaks. The interaction between animal production and climate change is complex and multi-directional since animal production contributes to climate change; but to the reverse and worse condition, climate change highly affects animal production. Climate change, animal production systems, and animal diseases are strongly linked to each other. But what is worse is that both change in climate and the production systems of animals highly affect the occurrence, distribution, emergence, and re-emergence of animal diseases. The close linkage among climate change, animal production, and disease; the increased threat of climate on the animal production and health sectors needs: the hands of stakeholders in the environment, animal production and health to work in an integrated and systematic manner; researches with emphasis given to the state of climate change and the direct and indirect effects it poses on animal production and health; and ensuring development of sustainable animal farming and land use, and climate adaptation and mitigation strategies.


Sign in / Sign up

Export Citation Format

Share Document