scholarly journals Poisson distribution series on a general class of analytic functions

2020 ◽  
Vol 24 (2) ◽  
pp. 241-251
Author(s):  
Basem A. Frasin

The main object of this paper is to find necessary and sufficient conditions for the Poisson distribution series to be in a general class of analytic functions with negative coefficients. Further, we consider an integral operator related to the Poisson distribution series to be in this class. A number of known or new results are shown to follow upon specializing the parameters involved in our main results.

2014 ◽  
Vol 2014 ◽  
pp. 1-3 ◽  
Author(s):  
Saurabh Porwal

The purpose of the present paper is to introduce a Poisson distribution series and obtain necessary and sufficient conditions for this series belonging to the classes T(λ,α) and C(λ,α). We also consider an integral operator related to this series.


2019 ◽  
Vol 11 (1) ◽  
pp. 78-86 ◽  
Author(s):  
B. A. Frasin

Abstract In this paper, we find the necessary and sufficient conditions, inclusion relations for Poisson distribution series $\mathcal{K}\left( {{\rm{m, z}}} \right) = {\rm{z + }}\sum\limits_{{\rm{n}} = 2}^\infty {{{{{\rm{m}}^{{\rm{n}} - 1}}} \over {\left( {n - 1} \right)!}}{{\rm{e}}^{ - {\rm{m}}}}{{\rm{z}}^{\rm{n}}}} $ to be in the subclasses 𝒮(k, λ) and 𝒞(k, λ) of analytic functions with negative coefficients. Further, we obtain necessary and sufficient conditions for the integral operator ${\rm{\mathcal{G}}}\left( {{\rm{m}},{\rm{z}}} \right) = \int_0^{\rm{z}} {{{{\rm{\mathcal{F}}}\left( {{\rm{m}},{\rm{t}}} \right)} \over {\rm{t}}}} {\rm{dt}}$ to be in the above classes.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 66
Author(s):  
Danyal Soybaş ◽  
Santosh B. Joshi ◽  
Haridas Pawar

In the present paper, we have introduced a new subclass of analytic functions involving integral operator defined by polylogarithm function. Necessary and sufficient conditions are obtained for this class. Further distortion theorem, linear combination and results on partial sums are investigated.


2021 ◽  
Vol 13(62) (2) ◽  
pp. 521-528
Author(s):  
B. A. Frasin ◽  
G. Murugusundaramoorthy ◽  
S. Yalcin

In this paper, we find the necessary and sufficient conditions and inclusion relations for Pascal distribution series to be in the classes Wδ(α, γ, β) of analytic functions. Further, we consider an integral operator related to Pascal distribution series. Several corollaries and consequences of the main results are also considered.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
B. A. Frasin ◽  
Ibtisam Aldawish

The main object of this paper is to find necessary and sufficient conditions for generalized Bessel functions of first kind zup(z) to be in the classes SPp(α,β) and UCSP(α,β) of uniformly spiral-like functions and also give necessary and sufficient conditions for z(2-up(z)) to be in the above classes. Furthermore, we give necessary and sufficient conditions for I(κ,c)f to be in UCSPT(α,β) provided that the function f is in the class Rτ(A,B). Finally, we give conditions for the integral operator G(κ,c,z)=∫0z(2-up(t))dt to be in the class UCSPT(α,β). Several corollaries and consequences of the main results are also considered.


2006 ◽  
Vol 4 (1) ◽  
pp. 73-84 ◽  
Author(s):  
Hasi Wulan ◽  
Jizhen Zhou

For a nondecreasing functionK:[0,8)?[0,8)and0<p<8,-2<q<8, we introduceQK(p,q), aQKtype space of functions analytic in the unit disk and study the characterizations ofQK(p,q). Necessary and sufficient conditions onKsuch thatQK(p,q)become some known spaces are given.


2001 ◽  
Vol 6 (5) ◽  
pp. 309-315 ◽  
Author(s):  
Dumitru Popa

We give necessary and sufficient conditions for an operator on the spaceC (T,X)to be(r,p)-absolutely summing. Also we prove that the injective tensor product of an integral operator and an(r,p)-absolutely summing operator is an(r,p)-absolutely summing operator.


1994 ◽  
Vol 03 (02) ◽  
pp. 163-177 ◽  
Author(s):  
R. D. KEEVER

This paper provides necessary and sufficient conditions for a representation of any 3-braid to be minimal (with regard to the number of crossings) and includes an algorithm to obtain such a representation, the number of distinct minimal representations of a given 3-braid, as well as a unique canonical form for each braid in B3. Also presented are necessary and sufficient conditions for any 3-string braid word to be a minimal representation of its conjugacy class. A canonical form for each conjugacy class in B3 is given.


Sign in / Sign up

Export Citation Format

Share Document