scholarly journals IMPROVEMENT OF CLONAL MICROPROPAGATION OF BERRY CROPS

2021 ◽  
Vol 16 (1) ◽  
pp. 39-44
Author(s):  
Marina Markova ◽  
Elena Somova

The aim of the study is to optimize the conditions for in vitro cultivation of blue honeysuckle, raspberry and strawberry. The work was carried out in 2012-2020. The Murasige-Skuga medium (1/2 MS) was the control for all cultures for the initiation of explants. Additionally, we used a modified nutrient medium 1/2 MS with a reduced NH4 content by 15 % compared to the base MS; and Woodi Plant Medium (1/2 WPM) for honeysuckle; for raspberries - Quoirin-Lepoivre (1/2 QL) and 1/2 Anderson; for strawberries - 1/2 MS. For micropropagation and rooting, the following media were used: honeysuckle - modified MS and WPM; raspberries - QL and Anderson; strawberries - MS modified by Siliplant and Boksyu; control for all - MS. The following growth regulators were added to the optimal each culture a nutrient medium: 6-benzylaminopurine (6-BAP), gibberellic acid (GA), waste products of the large wax moth larvae, indolyl-3-butyric acid (IBA), Siliplant, EcoFus, HB-101. The effect of LED-phytoirradiators with a combination of red, blue and white light in the spectrum 2: 1: 1, 1: 1: 1, 2: 1, respectively, and LED-irradiators with a changing spectrum and flashing were studied at the stages of micropropagation and rooting in all cultures. The survival rate of honeysuckle explants on 1/2 WPM medium was 62.2 % (control 27.9 %). The highest reproduction factor of 5.1 (control 2.6) was achieved when using LED 2 red : 1 blue : 1 white on MS modified + 6-BAP 1.0 mg/L + kinetin 0.5 mg/L, and high rooting rate of honeysuckle 89.0 % (76.0 % k) was achieved on MS modified + IBA 0.5 mg/L. Cultivation of red raspberries on QL + 6-BAP 1.0 mg/L + GA 0.5 mg/L and LED irradiation 2 red : 1 blue : 1 white provided a reproduction factor of 5.3 (control 2.7), addition of IBA 0.5 mg/L + HB-101 100 μL/L in QL and LED irradiation 1 red : 1 blue : 1 white contributed to 100 % rooting. The addition of 6-BAP 1.0 mg/L + IBA 0.2 mg/L + GA 0.5 mg/L in QL and LED lighting 1 red : 1 blue : 1 white increased the reproduction factor of remontant raspberries by 1.6 times (from 2, 6 to 4.1), and the use of QL + IBA 0.5 mg/L + HB-101 50 μL/L and LED 2 red : 1 blue : 1 white increased its rooting ability to 96 % (control 67 %). LED irradiation with a changing spectrum during cultivation of garden strawberries on MS + Siliplant + EcoFus at 0.5 ml/L provided a reproduction factor of 5.9 (control 3.8), and the reproduction factor of remontant strawberries on MS + HB-101 100 μl/L was 7.4 (control 5.6). The addition of IBA 0.5 mg/L + HB-101 100 μL/L to the MS promoted the rooting of garden strawberries of 100 % when using a LED irradiator with a changing spectrum, and remontant strawberries – with a blinking LED irradiator

Author(s):  
М. G. Markova ◽  
Е. N. Somova

Work on the clonal micropropagation of strawberries comes down to the search for new growth regulators, which include a biologically active substance - the waste product of the wax moth Galleria mellonella L. The effect of the waste product of the wax moth on the efficiency of clonal micropropagation of strawberries (Fragaria х ananassa duch) in vitro and in vivo conditions in 2018-2020 is shown. The object of research is micro-cuttings, rooted micro-cuttings and adapted micro-plants of garden strawberries of the Korona variety and of the remontant strawberries of the Brighton variety. It was revealed that at the proliferation stage, the propagation coefficient of the Korona variety increased significantly with the introduction of the waste product of the wax moth in doses of 4.0 mg/L and 6.0 mg/L and amounted to 4.2 and 3.8 pcs./explant, respectively; for Brighton variety, the coefficient increased significantly when the dose of the waste product of the wax moth 2.0 mg/L and amounted to 4.6 pcs./explant. The introduction of the waste product of the wax moth in doses of 4.0 mg/L and 6.0 mg/L into the nutrient medium had a significant effect on the yield of Brighton micro-cuttings suitable for rooting: the yield was 95.5 and 94.1%, respectively 87.7% in the control. For the Korona variety, no significant positive effect of the waste product of the wax moth on this indicator was noted. The rooting of micro-cuttings of strawberries of both varieties significantly increased with the introduction of the waste product of the wax moth into the nutrient medium in all studied doses and amounted to 86.4-100% in the Korona variety, and 88.9-100% in the Brighton variety.  The survival rate of adaptable micro-cuttings of Corona variety strawberries when sprayed with an aqueous solution of the waste product of the wax moth at a dose of 4.0 mg/L was 100%; the maximum survival rate of micro-cuttings Brighton variety is 99.8% in the variant with spraying with an aqueous solution of the waste product of the wax moth at a dose of 6.0 mg/L.


2021 ◽  
Vol 51 (1) ◽  
pp. 67-76
Author(s):  
Sergey Makarov ◽  
Irina Kuznetsova ◽  
Mikhail Upadyshev ◽  
Sergey Rodin ◽  
Anton Chudetsky

Introduction. The last decade saw a considerable increase in the demand for European cranberry planting material (Oxyccocus palustris Pers.) among consumers of non-timber forest products. Cranberry possesses high nutritional and medicinal value. Cultivars and hybrids of European cranberry prove extremely productive for plantation growth using the method of clonal micropropagation with revitalized planting material. Study objects and methods. The research featured European cranberry plants of the Dar Kostromy cultivar and its hybrid form 1-15-635. The study focused on the effect of various medications and growth regulators on the biometric profile of European cranberry and its adaptation to non-sterile conditions at all stages of in vivo clonal micropropagation. Results and discussion. During the introduction stage, the highest viability belonged to the explants treated with AgNO3 (95–96%) and Lizoformin 3000 (5%) as the main sterilizing solutions at a 10-min exposure and a 5% solution of Ecosterilizer (1:1) at a 20-min exposure (90–95%). During the micropropagation proper, the number, average length, and total growth of shoots increased as the concentration of cytokinin 2ip in the WPM 1/4 nutrient medium rose from 1.0 to 5.0 mg/L. At the stage of in vitro rooting, the maximal number, average length, and total growth of roots in regenerated plants for both cultivars were observed when Kornerost 5.0 mg/L was added to the WPM 1/4 nutrient medium. At the stage of adaptation to in vivo conditions, Micogel 0.2 mg/L contributed to the highest survival rate (94–100%). Conclusion. During clonal micropropagation in vitro, the biometric profile of European cranberry (Oxyccocus palustris Pers.) and its survival rate under non-sterile conditions in vivo proved to depend on various growth-regulating substances and their concentrations.


2019 ◽  
Vol 20 (4) ◽  
pp. 324-333 ◽  
Author(s):  
M. G. Markova ◽  
E. N. Somova

The article provides experimental data of 2017-2018 study on the effect of growth regulators and LED phytoirradiator on the proliferation and rooting of promising garden strawberry (Fragaria ananassa) varieties in vitro. Micro-shoots of Korona and Brighton strawberry varieties were taken as the object of the research. Strawberry micro-shoots were cultivated under fluorescent lamps in the control variant. A programmable combined blinking LED phytoirradiator was under study. The combined effect of cytokinin and gibberellic acid by adding them to the Murashige and Skoog nutrient medium, as well as the impact of Siliplant and EcoFus growth regulators on strawberry micropropagation has been studied. It was established that in the cultivation of Korona variety the combined use of Siliplant and EcoFus under illumination with LED phytoirradiator provided an increase in the reproduction factor. The coefficient was 5.0 pcs./explant that was 1.7 times higher than the control (3.0 pcs/explant), the LSD05 1.4 pcs/explant. The maximum reproduction factor of remontant strawberry Brighton variety was obtained in the variant with the use of Siliplant and LED phytoirradiator and amounted to 4.9 pcs./explant (4.2 pcs./explant in the control), the LSD05 was 1.5 pcs./ explant. Regardless of the lighting, the use of RibavExtra in all variants under study increased the rooting rate of the strawberry Korona micro-shoots from 92.8 to 99.1%, the LSD05 6.1%. The use of LED phytoirradiator in comparison with the luminescent one (94.3%) provided a significant increase in the rooting rate of the strawberry Korona micro-shoots to 98.1% regardless of the growth regulators used, the LSD05 3.5%. The combined use of LED phytoirradiator and Ribav-Extra growth regulator in concentrations of 1.0 and 1.5 mg/l resulted in rooting of strawberry Korona micro-shoots up to 100%. Regardless of the growth regulator used, the use of LED phytoirradiator in comparison with the luminescent one (88.9%) provided a significant increase in the rooting rate of the strawberry Brighton micro-shoots to 97.2%, the LSD05 4.6%. The rooting rate of the remontant strawberry Brighton microshoots was 100% in the variant with the use of Ribav-Extra in the concentration of 1.0 mg /l combined with LED phytoirradiator 20 days after transplanting for rooting.


2021 ◽  
Vol 22 (1) ◽  
pp. 57-66
Author(s):  
E. N. Cheremnykh ◽  
T. G. Lekontseva ◽  
A. V. Khudyakova ◽  
A. V. Fedorov

The paper presents the results of 2018-2019 research on improving the technology of growing planting material of bog cranberry (Vaccinium oxycoccos L.) of Krasa Severa, Severyanka, Virussaare varieties on the basis of in vitro. Studied was the effect of the concentrations of growth regulators in the composition of the nutrient medium according to Anderson's recipe on the reproduction and subsequent rooting of micro cuttings, as well as the duration of cultivation and adaptation of micro plants depending on partial pruning of shoots. It has been established that at the stage of introduction into in vitro culture, sterilization of explants with 33% hydrogen peroxide in an exposure of 5-8 minutes with washing in 5 portions of sterile distillate gives 60-80 % of viable shoots. The optimum phase of plant development for the successful introduction of in vitro culture is the swelling of buds. Cultivation of micro cuttings was carried out in a light room at a temperature of 25±2 °С, a photoperiod of 16 hours. The duration of each subculturing was 30-60 days. For the stage of actual micropropagation on Anderson's nutrient medium, an increase in the dose of cytokinin 6-benzylaminopurine (6-BAP) from 0.2 to 0.5 mg/l and an increase in the duration of cultivation from 30 to 60 days contributed to a significant increase in the multiplication factor on average for the tested cranberry varieties.According to the efficiency of micropropagation, the varieties Virussaare and Krasa Severa were distinguished – 9.3-12.0 pcs/stalk, respectively. At the rooting stage, the use of a root-forming reagent of indolyl-3-acetic acid (IUK) in doses of 0.2, 0.5 and 1.0 mg/l in the composition of Anderson's nutrient medium did not affect the quality of root formation and the length of shoots of Virussaare micro-plants. No significant varietal differences in the root-forming ability of microcuttings were found. The tendency of better rooting of micro cuttings was observed in the Virussaare variety (90.3 %) compared to the Severyanka (85.7 %) and Krasa Severa (79.3 %) varieties. Micro plants of the Krasa Severa cultivar were characterized by the longest shoots, the total number of roots was less, but their length was longer in comparison with other cultivars. For the adaptation stage, a substrate from a mixture of lowland peat and sphagnum moss was used (1:1). The efficiency of adaptation of micro plants of cranberry varieties when cutting the tip of the shoots was 100 %. Pruning of micro plants shoots contributed to the formation of more side shoots and better development of the aboveground part of the plants.


2021 ◽  
Vol 209 (06) ◽  
pp. 43-52
Author(s):  
Marina Markova ◽  
Elena Somova

Abstract. The aim of these studies was to introduce into the in vitro culture the steppe cherry (Cerasus fruticosa) variety Shchedraya and the domestic plum (Prunus domestica) variety Sineokaya for subsequent micropropagation. Methods. Optimal conditions for obtaining viable explants, such as sterilizing agent and initiation time, have been investigated. The suitability of various nutrient media for in vitro cultivation of these cultures has also been tested. As a result of the experiments, it was revealed that the most effective sterilizing agents were 38 % perhydrol (control) and 6% chlorhexidine: the yield of viable cherry explants was 63.8 % and 61.5 %, plums – 69.8 % and 66.6 %, respectively. The optimal time for the initiation of cherry explants in vitro was January, where the yield of viable explants averaged 53.9 %, in June – 49.1 %, and for plums the initiation time did not matter – the yield of explants was 55.8 % in winter and 53.1 % in summer. In vitro cultivation of cherries and plums on the Quoirin – Lepoivre nutrient medium provided a significantly high multiplication factor, which averaged 4.1 for cherries (2.7 in control) and 6.0 for plums (3.9 in control). On the same medium, the maximum multiplication factor was obtained, which was 6.2 for cherries and 8.2 for plums. Thus, the scientific novelty of these studies is that the optimal conditions (sterilizing agent, time, nutrient medium) have been selected for the regeneration of cherry and plum explants in vitro with their subsequent micropropagation.


Author(s):  
Sergey S. Makarov ◽  
◽  
Galina V. Tyak ◽  
Anton I. Chudetsky ◽  
Irina B. Kuznetsova ◽  
...  

The article presents the results of experimental studies on various propagation methods of the Arctic bramble in the Kostroma region. Industrial cultivation of forest berry plantations is a possible effective solution to the problem of low profitability of using nontimber forest products, reduction of the wild berries resources and their productivity and quality, and reclamation of cutover peatlands. It is advisable to use high-yield varietal planting material to create such plantations. Special attention is paid to propagation and production of healthy planting material using culture of plant cells and tissues. Data on sterilization of explants when introduced in vitro are given. The highest efficiency of sterilization was observed when using a chlorine-free eco-sterilizer (the plant survival rate on the MS nutrient medium was 90–93 %). The effect analysis of the passage number of regenerated plants on the multiplication factor of the Arctic bramble varieties was carried out. The optimal concentrations of cytokinins at the stage of micropropagation are shown. The largest number of the Arctic bramble roots was observed when adding 1.0 mg/L of Indole-3-butyric acid (IBA) and 0.5 mg/L of Ecogel to the nutrient medium. The technological and agrotechnical operations performed during the cultivation of planting material of forest berry plantations are considered. Data on the coefficients of vegetative propagation of plants and their resistance to diseases, yielding capacity, and recultivation of cutover peatlands are given. The best planting material of the Arctic bramble are ball-rooted seedlings. Sawdust and sphagnum were used in the cultivation of this berry on the peatland. The economic efficiency of its cultivation with the method of clonal micropropagation was 358.2 %. For citation: Makarov S.S., Tyak G.V., Kuznetsova I.B., Chudetsky A.I., Tsaregradskaya S.Yu. Producing Planting Material of Rubus arcticus L. by Clonal Micropropagation. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 6, pp. 89–99. DOI: 10.37482/0536-1036-2021-6-89-99


2019 ◽  
Vol 59 (9) ◽  
pp. 82-92
Author(s):  
Tatiana S. Morozova ◽  
◽  
Elizaveta V. Kuznecova ◽  
Sergey Yu. Semyonov ◽  
◽  
...  

The antifungal and growth-stimulating activity of biological detoxification waste products of hydrolysates of lignocellulosic raw materials in vitro and in vivo was evaluated in comparison with reference preparations (Alirin-B, Fitosporin-M) and control (sterile tap water). These wastes are specially adapted microbocenoses of activated sludge, worked out in the process of purification of hydrolyzates of lignocellulosic raw materials from inhibitors of acetone butyl fermentation. The agronomic value of biodetoxification waste was studied in three prototypes of different nature, using Iren spring wheat as an example. The results showed that detoxification bioagents, regardless of origin, showed fungistatic activity at the in vitro and in vivo study stages (biotest). In an in vitro experiment, all test samples showed significant antifungal activity against the fungus F. oxysporum. The most effective was the biodetoxification waste obtained on the basis of microbocenosis of activated sludge grown on a nutrient medium containing phenol, formic and acetic acid. As a result of exposure to this bioagent at the end of the experiment, the average diameter of the colonies of the fungus F. oxysporum was approximately 34 times less than in the control version. The detoxification bioagent, obtained on the basis of a specially adapted microbocenosis of activated sludge grown on a nutrient medium simulating wastewater, reduced the diameter of phytopathogenic fungus colonies by an average of 16 times. Specially adapted activated sludge from the sewage treatment facilities of the wood processing enterprise, worked out during the detoxification of hydrolysates of lignocellulosic raw materials, was also able to effectively suppress fungus growth, the average diameter of which was 19 times less than the control. The biotest results also confirmed the fungistatic activity of the test samples. The effectiveness of reducing the total infection with seminal infections in different experimental variants ranged from 52 to 84%. The growth-promoting ability of biodetoxification waste was weak.


Author(s):  
A. Revutska ◽  
V. Belava ◽  
A. Golubenko ◽  
N. Taran

In recent years, xanthones have received considerable attention from scientists due to their biological activity: anticarcinogenic, antiviral, antibacterial, antioxidant, anti-inflammatory and other properties.Therefore they are useful for prevention and treatment of different diseases:cancer, Alzheimer's and Parkinson's disease, cardiovascular disorders, diabetes, etc. Extracts of different species of plants containing xanthones are components of chemotherapeutic and other medical drugs. In order to find the most sensitive and environmentally safe method of quantitative determination of xanthones in the plant material and the nutrient medium, known methods were tested and selected for the prototype Vyisochina G. I. et al., 2011 method, which uses ethanol as an extractor. As the plant material we used plants of different species that were grown under in vitro cultivation conditions on the agarized nutrient medium. This agarized nutrient medium was also used for the xanthone content analysis. Based on the performed research, modifications of the method for determining the content of xanthones were adapted to the in vitro conditions, which detail the specificity of extraction and quantitative calculation of the xanthone content in plant explants. Our own method of determination of these compounds in the agarized nutrient medium was developed as well. The method, that we proposed, will significantly speed up the process of xanthone detecting and will also increase their yield in biotechnological processes for obtaining the pharmacologically valuable secondary metabolites of phenolic nature.


2021 ◽  
Vol 23 (3) ◽  
pp. 593-604
Author(s):  
L. S. Litvinova ◽  
K. A. Yurova ◽  
V. V. Shchupletsova ◽  
N. D. Gazatova ◽  
O. G. Khaziakhmatova ◽  
...  

Correct choice of nutrient media for culturing different types of cells in various applications is one of the most important aspects of modern biotechnology, since chemical composition of the culture media largely contains the necessary metabolites to support certain cells’ growth lines outside the body. Jurkat line of human leukemic T-lymphoblast-like cells (hereinafter Jurkat T-cells) is actively used for in vitro modeling of intracellular signaling and activation of normal blood T-lymphocytes mediated by the T-cell receptor/CD3/ CD4 complex in toxicological studies of immune and secretory responses, to test medicinal substances and ions. Also, Jurkat T-cells are widely used for ex vivo testing in immunology, oncology, toxicology, orthopedics, and traumatology. The existing standards and numerous studies are mainly based on short-term in vitro cultivation of Jurkat T-cells in RPMI 1640 nutrient medium. Meanwhile, the issues of long-term maintenance of the growth of Jurkat T-cells culture are poorly presented in the research literature. This study aimed for studying the activity of Jurkat T-cells over 7 to 14 days of in vitro culture and comparing the relative value of RPMI 1640 and αMEM media for the behavior of immunocompetent tumor cells. Using flow cytometry, multiplex analysis, and phase contrast Cell-IQ microscopy, the proportions of living cells and those dying by apoptosis and necrosis, secretion of cytokines and chemokines, and the dynamics of cell biomass propagation were studied. It was found that the αMEM medium in the complete nutrient medium, as compared with RPMI 1640, is more appropriate to in vitro promotion of cell viability (increased proportion of viable cells by 13.5% at the day 14), their secretory ability for 23 из 27 tested biomolecules, shortened adaptation time (на 32%) in culture before growth initiation, 5-fold increase of the Jurkat Т-cell cellularity by the day 7. Potential significance of the chemical components of nutrient media and secreted biomolecules for these results is discussed. As based on the results obtained, we concluded on superior properties of αMEM medium for long-term in vitro cultures of Jurkat T-cells. Consequently, the in vitro testing of medical devices intended for long-term contact with the body, including those for cancer patients, using Jurkat T-cell leukemia line in RPMI 1640 medium, may lead to wrong predictions on their biocompatibility and potential antitumor activity.


Author(s):  
V.K. Karimova ◽  
◽  
B.N. Baktybai ◽  
G.K. Magzumova ◽  
ZH. T. Sartbaev ◽  
...  

Today, many living organisms are negatively affected by climate change and anthropogenic activities, which leads to a decrease in their numbers. One of these rare and endangered plant species is the Ili barberry (Berberis iliensis) and the Karkaraly barberry (Berberis karkaralensis). This work is devoted to the optimization study of the cultivation conditions for a rare and endangered species of Ili barberry and Karkaralinsky barberry in vitro. To obtain sterile and viable explants, the sterilizing agent was a solution of 0.5% «Domestos» (7 min). For the regeneration of the main shoot of the barberry, the optimal nutrient medium is Murashige and Skoogwith the addition of 6-benzylaminopurine- 0.5 mg/l, gibberellic acid- 1.0 mg/l, indole-3-butyric acid -0.01 mg/l, where regeneration was 80% for the Ili barberry, barberry karkaralinsky - 70%. For the multiplication of Berberis iliensis microshoots, the Quoirin & Lepoivre culture medium with the addition of 0.75 mg/l - benzylaminopurine is optimal; the number of microshoots formed was 3.6 per explant. Root formation is one of the most difficult stages in micropropagation. For the rooting of microshoots of Karkaralinsky barberry, a nutrient medium of ½ Murashige and Skoog was used with the addition of indolylbutyric acid -1.5 mg/l.


Sign in / Sign up

Export Citation Format

Share Document