led lighting
Recently Published Documents


TOTAL DOCUMENTS

1576
(FIVE YEARS 414)

H-INDEX

45
(FIVE YEARS 7)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 540
Author(s):  
Shimi Sudha Letha ◽  
Math H. J. Bollen ◽  
Sarah K. Rönnberg

Light-emitting diode (LED) lighting has, compared to other types of lighting, a significantly lower energy consumption. However, the perceived service life is also important for customer satisfaction and here there is a discrepancy between customers’ experience and manufacturers’ statements. Many customers experience a significantly shorter service life than claimed by the manufacturers. An experiment was carried out in the Pehr Högström Laboratory at Luleå University of Technology in Skellefteå, Sweden to investigate whether voltage disturbances could explain this discrepancy. Over 1000 LED lamps were exposed to high levels of voltage disturbances for more than 6000 h; the failure rate from this experiment was similar to the one from previous experiments in which lamps were exposed to normal voltage. The discrepancy thus remains, even though some possible explanations have emerged from the project’s results. The lamps were exposed to five different types of voltage disturbances: short interruptions; transients; overvoltage; undervoltage; and harmonics. Only overvoltage resulted in failure of the lamps, and only for a single topology of lamp. A detailed analysis has been made of the topology of lamps that failed. This lamp type contains a different internal electronics circuit than the other lamp types. Failures of the lamps when exposed to overvoltage are due to the heat development in the control circuit increasing sharply when the lamps are exposed to a higher voltage. Hence, it is concluded that there are lamps that are significantly more sensitive to voltage disturbances than other lamp types. Manufactures need to consider the voltage quality that can be expected at the terminal of the lamp to prevent failure of lamps due to voltage disturbances. This paper therefore contains recommendations for manufacturers of lighting; the recommendations describe which voltage disturbances lamps should cope with.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 176
Author(s):  
Tatjana G. Shibaeva ◽  
Elena G. Sherudilo ◽  
Alexandra A. Rubaeva ◽  
Alexander F. Titov

The effect of continuous lighting (CL, 24 h) and light spectrum on growth and nutritional quality of arugula (Eruca sativa), broccoli (Brassica oleracea var. italic), mizuna (Brassica rapa. var. nipposinica), and radish (Raphanus sativus var. radicula) were investigated in growth chambers under light-emitting diode (LED) and fluorescent lighting. Microgreens were grown under four combinations of two photoperiods (16 h and 24 h) providing daily light integral (DLI) of 15.6 and 23.3 mol m−2 day−1, correspondingly) with two light spectra: LED lamps and fluorescent lamps (FLU). The results show that fresh and dry weights as well as leaf mass per area and robust index of harvested arugula, broccoli, mizuna, and radish seedlings were significantly higher under CL compared to 16 h photoperiod regardless of light quality. There were no visible signs of leaf photodamage. In all CL-treated plants higher chlorophyll a/b and carotenoid-to-chlorophyll ratios were observed in all plants except mizuna. CL treatment was beneficial for anthocyanin, flavonoid, and proline accumulation. Higher activities of antioxidant enzymes (catalase, superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase) were also observed in CL-treated plants. In most cases, the effects were more pronounced under LED lighting. These results indicate that plants under mild oxidative stress induced by CL accumulated more non-enzymatic antioxidants and increased the activities of antioxidant enzymes. This added nutritional value to microgreens that are used as functional foods providing health benefits. We suggest that for arugula, broccoli, mizuna, and radish, an LED CL production strategy is possible and can have economic and nutritional benefits.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Fahrizal Yusuf Affandi ◽  
Teddy Prayoga ◽  
Theoharis Ouzounis ◽  
Habtamu Giday ◽  
Julian C. Verdonk ◽  
...  

Tomato is a chilling-sensitive fruit. The aim of this study is to examine the role of preharvest blue LED lighting (BL) to induce cold tolerance in ‘Foundation’ tomatoes. Blue and red supplemental LED light was applied to achieve either 0, 12 or 24% additional BL (0B, 12B and 24B). Mature green (MG) or red (R) tomatoes were harvested and cold stored at 4 °C for 0, 5, 10, 15 and 20 d, and then stored for 20 d at 20 °C (shelf life). Chilling injury (CI) indices, color and firmness, hydrogen peroxide, malondialdehyde, ascorbic acid and catalase activity were characterized. At harvest, R tomatoes cultivated at 12B were firmer and showed less coloration compared to fruit of other treatments. These fruits also showed higher loss of red color during cold storage and lower CI symptoms during shelf-life. MG tomatoes cultivated at 12B showed delayed coloring (non-chilled) and decreased weight loss (long cold stored) during shelf life compared to fruit in the other treatments. No effects of light treatments, both for MG and R tomatoes, were observed for the selected antioxidant capacity indicators. Improved cold tolerance for R tomatoes cultivated at 12B points to lycopene having higher scavenging activity at lower concentrations to mitigate chilling injury.


Author(s):  
Jesús Fausto Córdova-Escobedo ◽  
Felipe Mendoza-González ◽  
Cristian Gomez-Rodriguez ◽  
Jesús Fausto Córdova-Manzo

This research evaluates the effects of color in humans generated by LED lighting systems. This evaluation allows us to know the different parameters that these systems generate, such as: the temperature and color of light suitable for human vision and thus be able to implement them in LED lighting designs for work areas. Having an adequate lighting system contributes to visual health and safety by avoiding work accidents. Each color has a different percentage of light reflection and in the same way each color affects us optically and psychologically by causing different sensations and perceptions in human beings such as visual fatigue, exhaustion, eye disorders, lacrimation, irritation, stress, migraines and even impaired vision Taking care of visual health is of vital importance. The methodology for evaluating lighting designs will be with NOM-030-ENER-2012. The contribution of this research will be to know the optimal colors and color temperature of light to use in LED lighting systems and to help lighting system designers in the selection of suitable LEDs and area colors that contribute to the visual health of humans


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4441
Author(s):  
Valentina Pintus ◽  
Ferenc Szabó ◽  
Dávid Noel Tóth ◽  
Karin Wieland ◽  
Péter Csuti ◽  
...  

This study aims to investigate the chemical stability of some modern paint samples exposed to a new Light Emitting Diode (LED)-lighting system and a halogen lamp by using micro-attenuated total reflectance of Fourier transform infrared spectroscopy (µ-ATR-FTIR), µ-Raman, pyrolysis—gas chromatography/mass spectrometry (Py-GC/MS), and thermally assisted hydrolysis and methylation of GC/MS (THM-GC/MS). Those investigations were performed before and after the exposure of the samples to lightings for 1250, 2400, 3300, and 5000 h. The results obtained with µ-Raman spectroscopy show the high stability of the selected inorganic pigments after the exposure to the lighting systems; while similar to the UV/Vis/NIR results reported in a previous study, µ-ATR-FTIR and THM-GC/MS results evidence greater chemical changes occurring principally on the linseed oil binder-based mock-ups among the acrylic and alkyd-based samples. Moreover, principal component analyses (PCA) and hierarchical cluster analyses (HCA) of THM-GC/MS results highlight that those changes were mostly dependent on the exposure time and on the type of pigment, while being independent of the lighting system used. Finally, semi-quantitative µ-ATR-FTIR results show slight pigment enrichment at the paint surface due to the auto and photo-oxidative degradation of the linseed oil binder.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 443
Author(s):  
Junichiro Ono ◽  
Noriyuki Unno ◽  
Kazuhisa Yuki ◽  
Jun Taniguchi ◽  
Shin-ichi Satake

We developed a boiling bubble resonator (BBR) as a new heat transfer enhancement method aided by boiling bubbles. The BBR is a passive device that operates under its own bubble pressure and therefore does not require an electrical source. In the present study, high-speed visualization of the flow motion of the microbubbles spouted from a vibration plate and the plate motion in the BBR was carried out using high-speed LED lighting and high-speed cameras; the sounds in the boiling chamber were simultaneously captured using a hydrophone. The peak point in the spectrum of the motion of the vibration plate and the peak point in the spectrum of the boiling sound were found to be matched near a critical heat-flux state. Therefore, we found that it is important to match the BBR vibration frequency to the condensation cycle of the boiling bubble as its own design specification for the BBR.


Sign in / Sign up

Export Citation Format

Share Document