scholarly journals Statistical relationships between variations of the geomagnetic field, auroral electrojet, and geomagnetically induced currents

2019 ◽  
Vol 5 (1) ◽  
pp. 48-58
Author(s):  
Андрей Воробьев ◽  
Andrey Vorobev ◽  
Вячеслав Пилипенко ◽  
Vyacheslav Pilipenko ◽  
Ярослав Сахаров ◽  
...  

Using observations from the IMAGE magnetic observatories and the station for recording geomagnetically induced currents (GIC) in the electric transmission line in 2015, we examine relationships between geomagnetic field and GIC variations. The GIC intensity is highly correlated (R>0.7) with the field variability |dB/dt| and closely correlated with variations in the time derivatives of X and Y components. Daily variations in the mean geomagnetic field variability |dB/dt| and GIC intensity have a wide night maximum, associated with the electrojet, and a wide morning maximum, presumably caused by intense Pc5–Pi3 geomagnetic pulsations. We have constructed a regression linear model to estimate GIC from the time derivative of the geomagnetic field and AE index. Statistical distributions of the probability density of the AE index, geomagnetic field derivative, and GIC correspond to the log-normal law. The constructed distributions are used to evaluate the probabilities of extreme values of GIC and |dB/dt|.

2019 ◽  
Vol 5 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Андрей Воробьев ◽  
Andrey Vorobev ◽  
Вячеслав Пилипенко ◽  
Vyacheslav Pilipenko ◽  
Ярослав Сахаров ◽  
...  

Using observations from the IMAGE magnetic observatories and the station for recording geomagnetically induced currents (GIC) in the electric transmission line in 2015, we examine relationships between geomagnetic field and GIC variations. The GIC intensity is highly correlated (R>0.7) with the field variability |dB/dt| and closely correlated with variations in the time derivatives of X and Y components. Daily variations in the mean geomagnetic field variability |dB/dt| and GIC intensity have a wide night maximum, associated with the electrojet, and a wide morning maximum, presumably caused by intense Pc5–Pi3 geomagnetic pulsations. We have constructed a regression linear model to estimate GIC from the time derivative of the geomagnetic field and AE index. Statistical distributions of the probability density of the AE index, geomagnetic field derivative, and GIC correspond to the log-normal law. The constructed distributions are used to evaluate the probabilities of extreme values of GIC and |dB/dt|.


2013 ◽  
Vol 8 (S300) ◽  
pp. 500-501
Author(s):  
Larisa Trichtchenko

AbstractCoronal mass ejections (CME) and associated interplanetary-propagated solar wind disturbances are the established causes of the geomagnetic storms which, in turn, create the most hazardous impacts on power grids. These impacts are due to the large geomagnetically induced currents (GIC) associated with variations of geomagnetic field during storms, which, flowing through the transformer windings, cause extra magnetisation. That can lead to transformer saturation and, in extreme cases, can result in power blackouts. Thus, it is of practical importance to study the solar causes of the large space weather events. This paper presents the example of the space weather chain for the event of 5-6 November 2001 and a table providing complete overview of the largest solar events during solar cycle 23 with their subsequent effects on interplanetary medium and on the ground. This compact overview can be used as guidance for investigations of the solar causes and their predictions, which has a practical importance in everyday life.


2019 ◽  
Vol 9 ◽  
pp. A18 ◽  
Author(s):  
Vladimir Belakhovsky ◽  
Vyacheslav Pilipenko ◽  
Mark Engebretson ◽  
Yaroslav Sakharov ◽  
Vasily Selivanov

Geomagnetically induced currents (GICs) represent a significant challenge for society on a stable electricity supply. Space weather activates global electromagnetic and plasma processes in the near-Earth environment, however, the highest risk of GICs is related not directly to those processes with enormous energy yield, but too much weaker, but fast, processes. Here we consider several typical examples of such fast processes and their impact on power transmission lines in the Kola Peninsula and in Karelia: interplanetary shocks; traveling convection vortices; impulses embedded in substorms; and irregular Pi3 pulsations. Geomagnetic field variability is examined using data from the IMAGE (International Monitor for Auroral Geomagnetic Effects) magnetometer array. We have confirmed that during the considered impulsive events the ionospheric currents fluctuate in both the East-West and North-South directions, and they do induce GIC in latitudinally extended electric power line. It is important to reveal the fine structure of fast geomagnetic variations during storms and substorms not only for a practical point of view but also for a fundamental scientific view.


2020 ◽  
Vol 38 (5) ◽  
pp. 983-998
Author(s):  
Liisa Juusola ◽  
Heikki Vanhamäki ◽  
Ari Viljanen ◽  
Maxim Smirnov

Abstract. Geomagnetically induced currents (GICs) are directly described by ground electric fields, but estimating them is time-consuming and requires knowledge of the ionospheric currents and the three-dimensional (3D) distribution of the electrical conductivity of the Earth. The time derivative of the horizontal component of the ground magnetic field (dH∕dt) is closely related to the electric field via Faraday's law and provides a convenient proxy for the GIC risk. However, forecasting dH∕dt still remains a challenge. We use 25 years of 10 s data from the northern European International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer network to show that part of this problem stems from the fact that, instead of the primary ionospheric currents, the measured dH∕dt is dominated by the signature from the secondary induced telluric currents at nearly all IMAGE stations. The largest effects due to telluric currents occur at coastal sites close to high-conducting ocean water and close to near-surface conductivity anomalies. The secondary magnetic field contribution to the total field is a few tens of percent, in accordance with earlier studies. Our results have been derived using IMAGE data and are thus only valid for the stations involved. However, it is likely that the main principle also applies to other areas. Consequently, it is recommended that the field separation into internal (telluric) and external (ionospheric and magnetospheric) parts is performed whenever feasible (i.e., a dense observation network is available).


2021 ◽  
Vol 7 (3) ◽  
pp. 73-110
Author(s):  
Vyacheslav Pilipenko

This review, offered for the first time in the Russian scientific literature, is devoted to various aspects of the problem of the space weather impact on ground-based technological systems. Particular attention is paid to hazards to operation of power transmission lines, railway automation, and pipelines caused by geomagnetically induced currents (GIC) during geomagnetic disturbances. The review provides information on the main characteristics of geomagnetic field variability, on rapid field variations during various space weather mani-festations. The fundamentals of modeling geoelectric field disturbances based on magnetotelluric sounding algorithms are presented. The approaches to the assessment of possible extreme values of GIC are considered. Information about economic effects of space weather and GIC is collected. The current state and prospects of space weather forecasting, risk assessment for technological systems from GIC impact are discussed. While in space geophysics various models for predicting the intensity of magnetic storms and their related geomagnetic disturbances from observations of the interplanetary medium are being actively developed, these models cannot be directly used to predict the intensity and position of GIC since the description of the geomagnetic field variability requires the development of additional models. Revealing the fine structure of fast geomagnetic variations during storms and substorms and their induced GIC bursts appeared to be important not only from a practical point of view, but also for the development of fundamentals of near-Earth space dynamics. Unlike highly specialized papers on geophysical aspects of geomagnetic variations and engineering aspects of the GIC impact on operation of industrial transformers, the review is designed for a wider scientific and technical audience without sacrificing the scientific level of presentation. In other words, the geophysical part of the review is written for engineers, and the engineering part is written for geophysicists. Despite the evident applied orientation of the studies under consideration, they are not limited to purely engineering application of space geophysics results to the calculation of possible risks for technological systems, but also pose a number of fundamental scientific problems


2020 ◽  
Author(s):  
Adamantia Zoe Boutsi ◽  
Georgios Balasis ◽  
Ioannis A. Daglis

<p>Geomagnetically Induced Currents (GIC) constitute an integral part of the space weather research and a subject of ever-growing attention for countries located in the low and middle latitudes. A series of recent studies highlights the importance of considering GIC risks for the Mediterranean region. The HellENIc GeoMagnetic Array (ENIGMA) is a network of 4 ground-based magnetometer stations in the areas of Thessaly, Central Greece, Peloponnese and Crete in Greece that provides geomagnetic measurements for the study of pulsations, resulting from the solar wind - magnetosphere coupling. ENIGMA magnetometer array enables effective remote sensing of geospace dynamics and the study of space weather effects on the ground (i.e. GIC). ENIGMA contributes data to SuperMAG, a worldwide collaboration of organizations and national agencies that currently operate approximately 300 ground-based magnetometers. In this presentation, we exploit ENIGMA data in order to study the spatio-temporal variations of the geomagnetic field that emanate during active geospace conditions. Moreover, we investigate the possibility that these variations produce hazardous currents and provide an estimation of their intensity, focusing on the most intense magnetic storms of the present solar cycle.</p>


2005 ◽  
Vol 23 (9) ◽  
pp. 3089-3093 ◽  
Author(s):  
P. Hejda ◽  
J. Bochníček

Abstract. Whereas geomagnetically induced currents are a source of problems for technological systems mainly at high geomagnetic latitudes, strong geomagnetic disturbances can have quite strong effects even at mid-latitudes. This paper deals with the analysis of the pipe-to-soil (P/S) voltage measured in oil pipelines in the Czech Republic during the Halloween magnetic storms in 2003. It is shown that the simplest - plane wave and uniform Earth-model of the electric field corresponds well to the measured P/S voltage. Although the largest amplitudes of the geomagnetic field were reached on the onset of the geomagnetic storm, large voltages were also induced in the main and recovery phases due to Pc5 oscillations.


2021 ◽  
Vol 7 (3) ◽  
pp. 68-104
Author(s):  
Vyacheslav Pilipenko

This review, offered for the first time in the Russian scientific literature, is devoted to various aspects of the problem of the space weather impact on ground-based technological systems. Particular attention is paid to hazards to operation of power transmission lines, railway automation, and pipelines caused by geomagnetically induced currents (GIC) during geomagnetic disturbances. The review provides information on the main characteristics of geomagnetic field variability, on rapid field variations during various space weather mani-festations. The fundamentals of modeling geoelectric field disturbances based on magnetotelluric sounding algorithms are presented. The approaches to the assessment of possible extreme values of GIC are considered. Information about economic effects of space weather and GIC is collected. The current state and prospects of space weather forecasting, risk assessment for technological systems from GIC impact are discussed. While in space geophysics various models for predicting the intensity of magnetic storms and their related geomagnetic disturbances from observations of the interplanetary medium are being actively developed, these models cannot be directly used to predict the intensity and position of GIC since the description of the geomagnetic field variability requires the development of additional models. Revealing the fine structure of fast geomagnetic variations during storms and substorms and their induced GIC bursts appeared to be important not only from a practical point of view, but also for the development of fundamentals of near-Earth space dynamics. Unlike highly specialized papers on geophysical aspects of geomagnetic variations and engineering aspects of the GIC impact on operation of industrial transformers, the review is designed for a wider scientific and technical audience without sacrificing the scientific level of presentation. In other words, the geophysical part of the review is written for engineers, and the engineering part is written for geophysicists. Despite the evident applied orientation of the studies under consideration, they are not limited to purely engineering application of space geophysics results to the calculation of possible risks for technological systems, but also pose a number of fundamental scientific problems


Sign in / Sign up

Export Citation Format

Share Document