scholarly journals Evaluation of Seismic Risk for Bridges using F-R-M Method: A Combination of Finite Element Method and Neural Network Model

Author(s):  
Mi Zhou ◽  
Wei Feng ◽  
Shuan-hai He
2011 ◽  
Vol 213 ◽  
pp. 419-426
Author(s):  
M.M. Rahman ◽  
Hemin M. Mohyaldeen ◽  
M.M. Noor ◽  
K. Kadirgama ◽  
Rosli A. Bakar

Modeling and simulation are indispensable when dealing with complex engineering systems. This study deals with intelligent techniques modeling for linear response of suspension arm. The finite element analysis and Radial Basis Function Neural Network (RBFNN) technique is used to predict the response of suspension arm. The linear static analysis was performed utilizing the finite element analysis code. The neural network model has 3 inputs representing the load, mesh size and material while 4 output representing the maximum displacement, maximum Principal stress, von Mises and Tresca. Finally, regression analysis between finite element results and values predicted by the neural network model was made. It can be seen that the RBFNN proposed approach was found to be highly effective with least error in identification of stress-displacement of suspension arm. Simulated results show that RBF can be very successively used for reduction of the effort and time required to predict the stress-displacement response of suspension arm as FE methods usually deal with only a single problem for each run.


2019 ◽  
Vol 40 (6) ◽  
pp. 795-802 ◽  
Author(s):  
刘宏伟 LIU Hong-wei ◽  
牛萍娟 YU Dan-dan ◽  
郭 凯 NIU Ping-juan ◽  
张建新 ZHANG Zan-yun ◽  
王 闯 GUO Kai ◽  
...  

2014 ◽  
Vol 622-623 ◽  
pp. 772-779 ◽  
Author(s):  
Amirreza Yaghoobi ◽  
Mohammad Bakhshi-Jooybari ◽  
Abdolhamid Gorji ◽  
Hamid Baseri

The success of sheet hydroforming process largely depends on the loading pressure path. Pressure path is one of the most important parameters in sheet hydroforming process. In this study, a combination of finite element simulation, artificial intelligence and simulated annealing optimization have been utilized to optimize the pressure path in producing cylindrical-spherical parts. In the beginning, the finite element model was verified based on laboratory experimental results. The experiments were designed and a radial basis neural network model was developed using data generated from verified finite element model to predict the thickness in the critical region of the product. Results indicated that the neural network model could be applied successfully to predict the sheet thickness in the critical region. In addition, the neural network model was used as a fitness function in simulated annealing algorithm to minimize the thickening in the above mentioned critical region. The final results showed that utilization of the optimized pressure path yields good thickness distribution of the part.


Sign in / Sign up

Export Citation Format

Share Document