scholarly journals Path Planning of Mobile Robot Based on Bacterial Foraging Algorithm and Artificial Potential Field Method

Author(s):  
Tian-tian ZHAO ◽  
Si-ming WANG
2015 ◽  
Vol 15 (2) ◽  
pp. 181-191 ◽  
Author(s):  
Wenbai Chen ◽  
Xibao Wu ◽  
Yang Lu

Abstract To solve the problem of local minima and unreachable destination of the traditional artificial potential field method in mobile robot path planning, chaos optimization is introduced to improve the artificial potential field method. The potential field function was adopted as a target function of chaos optimization, and a kind of “two-stage” chaos optimization was used. The corresponding movement step and direction of the robot were achieved by chaos search. Comparison of the improved method proposed in this paper and the traditional artificial potential field method is performed by simulation. The simulation results show that the improved method gets rid of the drawbacks, such as local minima and unreachable goal. Furthermore, the improved method is also verified by building up a physical platform based on “Future Star” robot. The success of the physical experiment indicates that the improved algorithm is feasible and efficient for mobile robot path planning.


2014 ◽  
Vol 644-650 ◽  
pp. 154-157 ◽  
Author(s):  
Su Ying Zhang ◽  
Yan Kai Shen ◽  
Wen Shuai Cui

The artificial potential field method has been extensively used in mobile robot path planning for its characteristics of simpleness, high efficiency, and smooth path. In this paper, to solve the problem of local minima in traditional artificial potential field method, A modified form of repulsion function is proposed. A detour force is added to the repulsion function, the problem of local minima can be solved effectively. In the end, with the help of Matlab software simulating, the result shows that this method is simple and effective.


2021 ◽  
Vol 11 (5) ◽  
pp. 2114
Author(s):  
Wenlin Yang ◽  
Peng Wu ◽  
Xiaoqi Zhou ◽  
Haoliang Lv ◽  
Xiaokai Liu ◽  
...  

Aiming at the problems of “local minimum” and “unreachable target” existing in the traditional artificial potential field method in path planning, an improved artificial potential field method was proposed after analyzing the fundamental causes of the above problems. The method solved the problem of local minimum by modifying the direction and influence range of the gravitational field, increasing the virtual target and evaluation function, and the problem of unreachable targets is solved by increasing gravity. In view of the change of motion state of robot fish in amphibious environments, the improved artificial potential field method was fused with a dynamic window algorithm, and a dynamic window evaluation function of the optimal path was designed on the basis of establishing the dynamic equations of land and underwater. Then, the simulation experiment was designed under the environment of Matlab2019a. Firstly, the improved and traditional artificial potential field methods were compared. The results showed that the improved artificial potential field method could solve the above two problems well, shorten the operation time and path length, and have high efficiency. Secondly, the influence of different motion modes on path planning is verified, and the result also reflects that the amphibious robot can avoid obstacles flexibly and reach the target point accurately according to its own motion ability. This paper provides a new way of path planning for the amphibious robot.


Sign in / Sign up

Export Citation Format

Share Document