scholarly journals The Analysis of the Influence of Technological Parameters on the Grinding Temperature in the Single-Pass Grinding Process of Solid Carbide End Mill Flutes

2022 ◽  
Vol 16 (1) ◽  
pp. 190-202
Author(s):  
Marcin Sałata
Mechanik ◽  
2018 ◽  
Vol 91 (10) ◽  
pp. 808-810
Author(s):  
Jan Burek ◽  
Marcin Sałata ◽  
Anna Bazan

The paper presents analysis of influence cutting speed vs and feed rate vf of single-pas grinding process of flute in solid carbide end mill using diamond grinding wheel with metal bond on the geometrical structure and cutting force Fn.


2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


2020 ◽  
pp. 451-457
Author(s):  
Aleksandr Yur'yevich Vititnev ◽  
Yuriy Davydovich Alashkevich ◽  
Natal'ya Geral'dovna Chistova ◽  
Roman Aleksandrovich Marchenko ◽  
Venera Nurullovna Matygullina

This paper presents the results of experimental studies of the physical and mechanical properties of wood-fiber boards of the wet production method when regulating the design and technological parameters of the grinding process. This allowed us to determine the influence of the working clearance between the grinding discs and the concentration of fibre mass with the subject to of quality change wood fiber after defibrator using the developed construction of the disc fibrillation action on the physico-mechanical properties of boards. As a result of the experiment, regression models were obtained that adequately describe the studied grinding process and allow predicting the values of physical and mechanical properties of the finished product depending on the established  parameters process. A comparative analysis of the size and quality characteristics of the fiber semi-finished product and its fractional composition when using a developed construction the disc of refiner fibrillation action and a traditional design used in industry is carried out. The preferential efficiency of the grinding process under the fibrillating effect the disc of refiner in comparison with the traditional construction disc of refiner is established. As a result, there is a significant improvement in the quality indicators of the fiber semi-finished product and its composition due to the formation and predominance in the total mass of long and thin, respectively, flexible fibrillated fibers with high tile-forming properties, which allows to increase the strength properties of the product (by 20–25%), without using binding resins.


Author(s):  
Mahmoud M. Rababah ◽  
Zezhong C. Chen

Grinding the helical surfaces in end-mill cutters using two-axis CNC machines is well investigated in literature. However, the grinding wheels do not have explicit geometric representations and the produced helical angles differ from the designed values. Moreover, to the best knowledge of the authors, no reliable and robust algorithm exists to grind generic shape cutters with constant normal rake angles. Thus, the first part of this work introduces a five-axis grinding process that keeps the normal rake angle constant along the rake face. The parameters that affect the shape of the tool flutes are also analyzed and studied in this part. These parameters are then optimized in the second part to obtain optimum wheel shapes grinding the tool flutes along optimum paths. Overall, the grinding process proposed grinds the tool flutes with close matching to the designed ones and replaces the complex wheel shapes commonly used by simple prismatic ones.


Author(s):  
Iwona Lapunka ◽  
Piotr Wittbrodt ◽  
Katarzyna Marek-Kolodziej
Keyword(s):  
End Mill ◽  

2011 ◽  
Vol 418-420 ◽  
pp. 1502-1506
Author(s):  
Abdul Shukor Syaimak

Custom-built Miniature Machine Tools (MMTs) are now becoming more popular with the demand for reduced energy consumption and workshop floor when machining small/medium batch size micro-components. This paper investigates the capability of a custom-built 4-axis MMT through machining a micro-component demonstrator. The experiments have been carried out in Titanium Alloyed (TiAL6V4) using 0.6mm solid carbide flat end mill cutters. From here, the surface quality and geometrical accuracy of the machined testpiece are evaluated and analysed. The investigation has shown that acceptable geometrical accuracies and surface quality of the machined micro-demonstrator can be achieved using the in-house developed MMT. These results show that the use of the custom-made MMT does not hinder the micro-milling process to produce a good and satisfactory surface quality and acceptable geometrical accuracy.


2013 ◽  
Vol 442 ◽  
pp. 36-39
Author(s):  
Ke Ma

An experimental study was performed to analyze the feasibility of heat pipe cooling in creep feed grinding applications. A new type of grinding wheel is developed to enhance the heat transfer of the grinding contact zone then decrease the grinding temperature. The performance of the new type grinding wheel was evaluated by measuring the grinding temperature when it was creep feed grinding the Ti-6Al-4V Alloy and the experimental results were compared with an ordinary grinding wheel. Results of the comparative study indicated that the use of enhanced cooling technology in a grinding wheel can decrease the grinding temperature significantly thus avoid the surface burning in grinding.


Author(s):  
B W Kruszyński ◽  
P Lajmert

This paper presents an intelligent system for optimization of the cylindrical traverse grinding process whose objective is to maximize the material removal rate with constraints on workpiece out-of-roundness and waviness errors, on surface finish, and on grinding temperature. A theoretical analysis of wheel wear development in the traverse grinding process is presented. Next, the results of an experimental test are discussed to establish the most efficient strategy for grinding allowance removal. In the optimization scheme a feedforward neural network is employed to obtain a model which describes relations between the process input parameters and the grinding results. Then this model is used to optimize adaptively the traverse grinding process. The performance of the proposed optimization system is evaluated by simulation research.


Author(s):  
Wen-jian Wang ◽  
Kai-kai Gu ◽  
Kun Zhou ◽  
Zhen-bing Cai ◽  
Jun Guo ◽  
...  

The objective of this study is to explore the influence of grinding stone granularity on the grinding force and rail material removal behaviors using a rail grinding friction machine. The results indicate that with the increase in granularity, the grinding force, and friction coefficient in the grinding interface obviously increase, which brings about a rise in the hardness and grinding temperature-rise of rail specimens. The increase in the grinding stone granularity causes a fall in the grinding volume and surface roughness of rail materials and brings about stronger vibration in the grinding interface owing to different material removal mechanisms. In view of the experimental results, the optimization of grinding stone granularity is significant for improving the rail grinding efficiency and surface quality.


2011 ◽  
Vol 697-698 ◽  
pp. 67-70
Author(s):  
Ji Liu ◽  
Wu Yi Chen ◽  
Xun Li ◽  
Zhi Tong Chen ◽  
Xi Yue Zou

The study focused on surface burn of titanium alloy (TC4) in the grinding process using a novel segmented cup wheel with internal cooling structure. The threshold burn temperature was found in grinding TC4. Plastically deformed coating layers and micro-cracks were observed on ground surface by SEM (Scanning Electronic Microscopy) and depth of microstructure alterations was more than 180 microns in high temperature. Finally, a novel wheel with internal cooling structure was developed for reducing grinding temperature and suppressing surface burn.


Sign in / Sign up

Export Citation Format

Share Document