scholarly journals Increasing Importance of Environmentally Benign Polymeric Materials

Kobunshi ◽  
2008 ◽  
Vol 57 (6) ◽  
pp. 425-425
Author(s):  
Yoshio INOUE
2020 ◽  
Vol 38 (6) ◽  
pp. 552-573
Author(s):  
Nikita Mishra ◽  
Dilip Vasava

Flame retardants are chemical compounds when mixed or incorporated in to polymers provide varying degrees of flammability protection. Flammable polymeric materials are ubiquitous with a wide array of applications. However, recent studies have shown potential environmental and health concerns with certain halogen-containing flame retardants. Thus, it has now become a necessity to explore new and effective materials that are safer and environmentally benign. In this context, halogen-free phosphorus- and nitrogen-containing flame retardants have attracted much attention worldwide. Moreover, s-triazine is the central focus because of its excellent charring effect. General strategies for synthesizing s-triazine compounds mostly via nucleophilic substitution reaction have been highlighted. This review provides a comprehensive description on design and synthesis of flame-retardant materials with significant flammability performance.


Author(s):  
D. L. Misell

In the electron microscopy of biological sections the adverse effect of chromatic aberration on image resolution is well known. In this paper calculations are presented for the inelastic and elastic image intensities using a wave-optical formulation. Quantitative estimates of the deterioration in image resolution as a result of chromatic aberration are presented as an alternative to geometric calculations. The predominance of inelastic scattering in the unstained biological and polymeric materials is shown by the inelastic to elastic ratio, I/E, within an objective aperture of 0.005 rad for amorphous carbon of a thickness, t=50nm, typical of biological sections; E=200keV, I/E=16.


Author(s):  
Martin J. Mahon ◽  
Patrick W. Keating ◽  
John T. McLaughlin

Coatings are applied to appliances, instruments and automobiles for a variety of reasons including corrosion protection and enhancement of market value. Automobile finishes are a highly complex blend of polymeric materials which have a definite impact on the eventual ability of a car to sell. Consumers report that the gloss of the finish is one of the major items they look for in an automobile.With the finish being such an important part of the automobile, there is a zero tolerance for paint defects by auto assembly plant management. Owing to the increased complexity of the paint matrix and its inability to be “forgiving” when foreign materials are introduced into a newly applied finish, the analysis of paint defects has taken on unparalleled importance. Scanning electron microscopy with its attendant x-ray analysis capability is the premier method of examining defects and attempting to identify their root cause.Defects are normally examined by cutting out a coupon sized portion of the autobody and viewing in an SEM at various angles.


Author(s):  
J. Thieme ◽  
J. Niemeyer ◽  
P. Guttman

In soil science the fraction of colloids in soils is understood as particles with diameters smaller than 2μm. Clay minerals, aquoxides of iron and manganese, humic substances, and other polymeric materials are found in this fraction. The spatial arrangement (microstructure) is controlled by the substantial structure of the colloids, by the chemical composition of the soil solution, and by thesoil biota. This microstructure determines among other things the diffusive mass flow within the soils and as a result the availability of substances for chemical and microbiological reactions. The turnover of nutrients, the adsorption of toxicants and the weathering of soil clay minerals are examples of these surface mediated reactions. Due to their high specific surface area, the soil colloids are the most reactive species in this respect. Under the chemical conditions in soils, these minerals are associated in larger aggregates. The accessibility of reactive sites for these reactions on the surface of the colloids is reduced by this aggregation. To determine the turnover rates of chemicals within these aggregates it is highly desirable to visualize directly these aggregation phenomena.


2020 ◽  
Vol 11 (48) ◽  
pp. 7603-7624
Author(s):  
Ismail Altinbasak ◽  
Mehmet Arslan ◽  
Rana Sanyal ◽  
Amitav Sanyal

This review provides an overview of synthetic approaches utilized to incorporate the thiol-reactive pyridyl-disulfide motif into various polymeric materials, and briefly highlights its utilization to obtain functional materials.


Polymer News ◽  
2004 ◽  
Vol 29 (7) ◽  
pp. 205-212 ◽  
Author(s):  
Rengarajan Balaji ◽  
Sylvie Boileau ◽  
Philippe Guérin ◽  
Daniel Grande

1991 ◽  
Vol 65 (05) ◽  
pp. 608-617 ◽  
Author(s):  
Joseph A Chinn ◽  
Thomas A Horbett ◽  
Buddy D Ratner

SummaryThe role of fibrinogen in mediating platelet adhesion to polymers exposed to blood plasma was studied by comparison of the effect of plasma dilution on fibrinogen adsorption and platelet adhesion, and by the use of coagulation factor deficient plasmas. Polyetherurethane substrates were first preadsorbed with dilute plasma, then contacted with washed platelets suspended in a modified, apyrase containing Tyrode’s buffer. Platelet adhesion was studied under static conditions in Multiwell dishes, and also under shearing conditions using a parallel plate perfusion chamber. Fibrinogen adsorption and platelet adhesion were measured using 125I radiolabeled baboon fibrinogen and min radiolabeled baboon platelets, respectively. Surfaces were characterized by electron spectroscopy for chemical analysis (ESCA).When fibrinogen adsorption to Biomer was measured after 2 h contact with a series of dilute plasma solutions under static conditions, a peak in adsorption was observed from 0.26% plasma, i.e., adsorption was greater from 0.26% plasma than from either more or less dilute plasma. A peak in subsequent platelet adhesion to the plasma preadsorbed surfaces, measured after 2 h static incubation with washed platelets, was also observed but occurred on Biomer preadsorbed with 1.0% plasma.When fibrinogen adsorption was measured after 5 min contact under shearing conditions, the fibrinogen adsorption peak occurred on surfaces that had been exposed to 1.0% plasma. A peak in platelet adhesion to these preadsorbed surfaces, measured after 5 min contact with the platelet suspensions under shearing conditions, was observed on Biomer preadsorbed with 0.1% plasma. Shifts between the positions of the peaks in protein adsorption and platelet adhesion occurred on other polymers tested as well.Platelet adhesion was almost completely inhibited when baboon and human plasmas lacking fibrinogen (i. e., serum, heat defibrinogenated plasma, and congenitally afibrinogénémie plasma) were used. Platelet adhesion was restored to near normal when exogenous fibrinogen was added to fibrinogen deficient plasmas. Adhesion was also inhibited completely when a monoclonal antibody directed against the glycoprotein IIb/IIIa complex was added to the platelet suspension. Platelet adhesion to surfaces preadsorbed to von Willebrand factor deficient plasma was the same as to surfaces preadsorbed with normal plasma.While it appears that surface bound fibrinogen does mediate the initial attachment of platelets to Biomer, the observation that the fibrinogen adsorption and platelet adhesion maxima do not coincide exactly also suggests that the degree of subsequent platelet adhesion is dictated not only by the amount of surface bound fibrinogen but also by its conformation.


Sign in / Sign up

Export Citation Format

Share Document