M602 Development of DEM algorithm for GPU accelerator toward ultra-large-scale particle simulation

2015 ◽  
Vol 2015.90 (0) ◽  
pp. 344
Author(s):  
Mitsunobu AKAI ◽  
Takuya TSUJI ◽  
Tomohiro DEGAWA ◽  
Toshitsugu TANAKA
2011 ◽  
Vol 30 (3) ◽  
pp. 1151-1160 ◽  
Author(s):  
J. Woodring ◽  
J. Ahrens ◽  
J. Figg ◽  
J. Wendelberger ◽  
S. Habib ◽  
...  

Author(s):  
Christopher Pagano ◽  
Flavia Tauro ◽  
Salvatore Grimaldi ◽  
Maurizio Porfiri

Large scale particle image velocimetry (LSPIV) is a nonintrusive environmental monitoring methodology that allows for continuous characterization of surface flows in natural catchments. Despite its promise, the implementation of LSPIV in natural environments is limited to areas accessible to human operators. In this work, we propose a novel experimental configuration that allows for unsupervised LSPIV over large water bodies. Specifically, we design, develop, and characterize a lightweight, low cost, and stable quadricopter hosting a digital acquisition system. An active gimbal maintains the camera lens orthogonal to the water surface, thus preventing severe image distortions. Field experiments are performed to characterize the vehicle and assess the feasibility of the approach. We demonstrate that the quadricopter can hover above an area of 1×1m2 for 4–5 minutes with a payload of 500g. Further, LSPIV measurements on a natural stream confirm that the methodology can be reliably used for surface flow studies.


2017 ◽  
Vol 34 (5) ◽  
pp. 1551-1571 ◽  
Author(s):  
Ming Xia

Purpose The main purpose of this paper is to present a comprehensive upscale theory of the thermo-mechanical coupling particle simulation for three-dimensional (3D) large-scale non-isothermal problems, so that a small 3D length-scale particle model can exactly reproduce the same mechanical and thermal results with that of a large 3D length-scale one. Design/methodology/approach The objective is achieved by following the scaling methodology proposed by Feng and Owen (2014). Findings After four basic physical quantities and their similarity-ratios are chosen, the derived quantities and its similarity-ratios can be derived from its dimensions. As the proposed comprehensive 3D upscale theory contains five similarity criteria, it reveals the intrinsic relationship between the particle-simulation solution obtained from a small 3D length-scale (e.g. a laboratory length-scale) model and that obtained from a large 3D length-scale (e.g. a geological length-scale) one. The scale invariance of the 3D interaction law in the thermo-mechanical coupled particle model is examined. The proposed 3D upscale theory is tested through two typical examples. Finally, a practical application example of 3D transient heat flow in a solid with constant heat flux is given to illustrate the performance of the proposed 3D upscale theory in the thermo-mechanical coupling particle simulation of 3D large-scale non-isothermal problems. Both the benchmark tests and application example are provided to demonstrate the correctness and usefulness of the proposed 3D upscale theory for simulating 3D non-isothermal problems using the particle simulation method. Originality/value The paper provides some important theoretical guidance to modeling 3D large-scale non-isothermal problems at both the engineering length-scale (i.e. the meter-scale) and the geological length-scale (i.e. the kilometer-scale) using the particle simulation method directly.


2017 ◽  
Vol 814 ◽  
pp. 592-613 ◽  
Author(s):  
Andras Nemes ◽  
Teja Dasari ◽  
Jiarong Hong ◽  
Michele Guala ◽  
Filippo Coletti

We report on optical field measurements of snow settling in atmospheric turbulence at $Re_{\unicode[STIX]{x1D706}}=940$. It is found that the snowflakes exhibit hallmark features of inertial particles in turbulence. The snow motion is analysed in both Eulerian and Lagrangian frameworks by large-scale particle imaging, while sonic anemometry is used to characterize the flow field. Additionally, the snowflake size and morphology are assessed by digital in-line holography. The low volume fraction and mass loading imply a one-way interaction with the turbulent air. Acceleration probability density functions show wide exponential tails consistent with laboratory and numerical studies of homogeneous isotropic turbulence. Invoking the assumption that the particle acceleration has a stronger dependence on the Stokes number than on the specific features of the turbulence (e.g. precise Reynolds number and large-scale anisotropy), we make inferences on the snowflakes’ aerodynamic response time. In particular, we observe that their acceleration distribution is consistent with that of particles of Stokes number in the range $St=0.1{-}0.4$ based on the Kolmogorov time scale. The still-air terminal velocities estimated for the resulting range of aerodynamic response times are significantly smaller than the measured snow particle fall speed. This is interpreted as a manifestation of settling enhancement by turbulence, which is observed here for the first time in a natural setting.


Sign in / Sign up

Export Citation Format

Share Document