Fundamental Study on the Earthquake Isolation System for Light-Weight Houses with Rubber bearing and Friction Mechanics : 1st Report Basic System Concept and Performance

Author(s):  
Osamu FURUYA ◽  
Keisuke MINAGAWA ◽  
Satoshi FUJITA ◽  
Tsuyoshi FUKASAWA
2003 ◽  
Vol 2003.9 (0) ◽  
pp. 269-270
Author(s):  
Keisuke Minagawa ◽  
Satoshi Fujita ◽  
Tsuyoshi FUKASAWA ◽  
Masahiro SAITO

Author(s):  
Iswandi Imran ◽  
Marie Hamidah ◽  
Tri Suryadi ◽  
Hasan Al-Harris ◽  
Syamsul Hidayat

<p>In order to overcome stringent seismic requirement in the new Greater Jakarta Light Rail Transit Project, a breakthrough seismic system shall be chosen to obtain expected structural performance. This seismic system shall be designed to provide operational performance level after strong earthquake events. To achieve the criteria, seismic isolation system using Lead Rubber Bearings is chosen. With this isolation system, Greater Jakarta LRT has become the first seismically isolated infrastructure and apparently an infrastructure with the largest numbers of LRBs in one single project in Indonesia. More than 10.400 Pcs LRBs are used for the first phase of the construction and the numbers will be certainly increased in the next phase of the construction. To evaluate the structural performance, non-linear time history analysis is used. A total of 3 pair matched ground motions will be used as the input for the response history analysis. The ability of the lead rubber bearing to isolate and dissipate earthquake actions will determine its structural performance level. This will be represented by the nonlinear hysteretic curves obtained throughout the earthquake actions.</p>


Author(s):  
Kengo Goda ◽  
Osamu Furuya ◽  
Kohei Imamura ◽  
Kenta Ishihana

At the present, base isolation system has been recognized by general earthquake resistant technique since the Great Hanshin Earthquake 1995. The seismic isolation will be aggressively applied to not only architectural and civil structures but also various structures, because the effectiveness on seismic safety had been demonstrated again in the Great East Japan Earthquake. In generally, although the base isolation system is divided into laminated rubber bearing type and friction sliding bearing type. In the case of former type, shape factor, maximum or minimum outer shapes and so on are restricted by the material characteristics in visco-elastic material. In general, the isolation structure is used in high damping rubber. However, we pay attention to base isolation using urethane elastomer. Urethane elastomer has excellent elasticity, mechanical strength, abrasion resistance, weather resistance, oil resistance, impact resistance the absorbent, anti-vibration and excellent low-temperature properties. Furthermore, it is possible to impart various characteristics by a combination of isocyanate and polyol and chain extender, requires no large-scale apparatus, it has the advantage molecular design is easy. In previous study, the research and development of laminated type base isolation device using urethane elastomer was carried out to upgrade a seismic safety for various structures. The fundamental characteristics was investigated from several loading test by using various experimental devices, and the design formula for the stiffness and equivalent damping coefficient is formulated as an approximate expression of mechanical characteristics until now. It was confirmed that urethane elastomer is not hardening up to 500% shear strain. Moreover, the experimental examination for aged deterioration in the urethane material has been continuously carried out. As the results, it was confirmed that the laminated type seismic isolation device using urethane elastomer is possible to develop as a practicable device from the stable mechanical properties as considering in design step. In this study, the small-scale laminated type base isolation device using urethane elastomer is advanced to the direction of further technical upgrading and of scale down for light-weight structure as a sever rack. The first stage, basic properties of the urethane elastomer has been investigated by loading test. Furthermore, the design equation is created by loading test using urethane elastomer. The validity of the design equation has been confirmed. The second stage, the compression creep test with laminated type base isolation device has been investigated to confirm an effect on light-weight mechanical devices.


2020 ◽  
Vol 156 ◽  
pp. 05026
Author(s):  
Fauzan ◽  
Afdhalul Ihsan ◽  
Mutia Putri Monika ◽  
Zev Al Jauhari

The amount of potential investment in Padang City, Indonesia since 2017 attracted many investors to contribute to the city. One of the investments is a 12-story hotel that will be constructed in By Pass Street of the city. The hotel is located in a high seismic zone area, so the seismic base isolation has been proposed to be used in the hotel building. The main aim of using a seismic base isolation device is to reduce the inertia forces introduced in the structure due to earthquakes by shifting the fundamental period of the structure out of dangerous resonance range and concentration of the deformation demand at the isolation system. An analytical study on the Reinforced Concrete (RC) hotel building with and without rubber bearing (RB) base isolation is carried out using the response spectrum and time history analysis methods. The results show that internal forces and inter-story drift of the building with high damping rubber bearing (HDRB) are lower than that of the fixed base with a remarkable margin. From this study, it is recommended to use the HDRB base isolation for medium and high rise buildings with soft soil in Padang City, Indonesia.


2020 ◽  
Vol 6 (2) ◽  
pp. 181-194
Author(s):  
Syahnandito ◽  
Reni Suryanita ◽  
Ridwan

Salah satu cara yang dapat dilakukan adalah menggunakan peredam beban gempa dengan sistem isolasi dasar (base isolation system). Penggunaan base isolation system  pada bangunan dapat mengisolasi perambatan getaran akibat gempa dari tanah ke struktur atas bangunan menggunakan komponen berbahan karet. Tujuan penelitian ini adalah untuk menganalisis pengaruh penggunaan sistem isolasi dasar berupa High Damping Rubber Bearing pada periode dan gaya geser dasar  struktur beton bertulang. Objek penelitian adalah bangunan hotel 15 lantai dengan ketinggian 62,9 m. Penelitian diawali dengan pemodelan struktur menggunakan aplikasi ETABS v2016 sehingga didapatkan periode dan gaya geser dasar struktur fixbase. Tahap selanjutnya memberikan gaya pada model struktur dengan isolasi dasar High Dumper Rubber Bearing sehingga didapatkan periode dan gaya geser dasar struktur dengan base isolator. Hasil analisis pada struktur fixbase didapatkan periode sebesar 4,212 detik, dengan gaya geser dasar didapatkan sebesar 1470,725 ton. Sedangkan hasil analisis pada struktur dengan base isolator didapatkan periode sebesar 5,500 detik, dengan gaya geser dasar didapatkan sebesar 1286,071 ton. Maka dapat disimpulkan bahwa pada struktur dengan base isolator terjadi peningkatan periode sebesar 30,58 %, sedangkan gaya geser dasar terjadi penurunan 12,56 %.


2020 ◽  
Vol 29 (5) ◽  
pp. 055045 ◽  
Author(s):  
Sasa Cao ◽  
Osman E Ozbulut ◽  
Suiwen Wu ◽  
Zhuo Sun ◽  
Jiangdong Deng

2019 ◽  
Vol 276 ◽  
pp. 01013
Author(s):  
Ahmad Basshofi Habieb ◽  
Tavio Tavio ◽  
Gabriele Milani ◽  
Usman Wijaya

Lead Rubber Bearing (LRB) has been widely applied for seismic protection of mid and high-rise buildings around the world. Its excellent energy dissipation becomes the most important aspect of this isolation system thanks to the plasticity and recovery behavior of the lead core. Aiming to develop a deeper knowledge on the behavior of LRB’s, a 3D detailed finite element (FE) modeling is performed in Abaqus FE software. Some important parameters involved in the model are plasticity of the lead core and hyper-elasticity and viscosity of the rubber material. The parameters for rubber material are derived from the results of experimental works in the laboratory, including uniaxial tensile test and relaxation test. The bearing model is then subjected to a cyclic shear-test under constant vertical load. The result of the 3D-FE model is then compared with the analytic-Abaqus model for LRB isolators, developed in the literature. Finally, both 3D-FE model and analytic model result in a good agreement on the shear behaviour of the presented LRB.


2013 ◽  
Vol 448-453 ◽  
pp. 2045-2048
Author(s):  
Yan Zhong Ju ◽  
Xin Lei Wu

Choosing LW15-550Y porcelain high voltage SF6 circuit breaker as the research subject, we designed the lead laminated rubber bearing (LRB) seismic isolation device for LW15-550Y circuit breaker. We finally gets the results that the LRB isolation system increases the flexibility of the breaker structure and improves the seismic performance of the high voltage circuit breaker structure.


Sign in / Sign up

Export Citation Format

Share Document