Analysis of Vibration Isolator’s Anti-Seismic Performance in Porcelain SF6 High Voltage Circuit Breaker

2013 ◽  
Vol 448-453 ◽  
pp. 2045-2048
Author(s):  
Yan Zhong Ju ◽  
Xin Lei Wu

Choosing LW15-550Y porcelain high voltage SF6 circuit breaker as the research subject, we designed the lead laminated rubber bearing (LRB) seismic isolation device for LW15-550Y circuit breaker. We finally gets the results that the LRB isolation system increases the flexibility of the breaker structure and improves the seismic performance of the high voltage circuit breaker structure.

Author(s):  
Junji Suhara ◽  
Tadashi Tamura ◽  
Yasuo Okada ◽  
Katsuhiko Umeki

Three dimensional (3D) seismic isolation device has been developed to use for the base isolation system of the heavy building like a nuclear reactor building. The developed device is the 3D seismic isolation device that consists of the laminated rubber bearing as a horizontal isolation device and the rolling seal type air spring as the vertical isolation device in series. In this research, the 3D seismic isolation device reduction model whose scale is 1/10 is made and the workability of the device by the horizontal and vertical dynamic load is examined. Two experiment parameters are considered. One is the case that the structure of the part that the horizontal load and the vertical load contact is pin condition and the other is the case of the roller condition. As a result of the examination, the workability of the vertical direction is confirmed when the horizontal load acts. The pressure resistant ability test for the air spring is performed by the monotonic pressurization. As the result, it is confirmed that pressure resistant ability improved by restricting the side deformation of the air spring and that the material of the existing air spring can withstand high pressure use sufficiently. As the result, it is confirmed that the developed 3D seismic isolation device is applicable to the actual plant.


Author(s):  
Tetsuya Hagiwara ◽  
Junji Suhara ◽  
Satoshi Moro

Three dimensional (3D) seismic isolation device has been developed to use for the base isolation system of the heavy building like a nuclear reactor building. The developed device is the 3D seismic isolation device that consists of the laminated rubber bearing as a horizontal isolation device and the rolling seal type air spring as the vertical isolation device in series. As the lead rubber bearing and the air spring are individually widely utilized with the general buildings and industrial structures, their reliability is high. However, when these pieces of equipment are combined, the issues that should be developed arise. The prospect of the technical feasibility of the device has already been acquired by feasibility test. In this study, a 1/12-scaled model of a 3D base isolation device is manufactured and the four tests are carried out. The four tests are dynamic vertical and horizontal test, orifice-damping test, pressure resistant ability test, and accelerated aging test. As the results of the tests, the developed 3D seismic isolation device is confirmed to be applicable to a nuclear power plant.


2013 ◽  
Vol 380-384 ◽  
pp. 3213-3216
Author(s):  
Hai Yan Wang ◽  
Duan Lei Yuan ◽  
Chen Xu Niu ◽  
Hua Jun Dong

In this paper, mainly for the problem that high voltage circuit breaker closing at the random phase can bring hard harmfulness to the power system. We design the 35kV SF6-Phase Control circuit breaker can control speed smartly, and opens or closes with phase selection, which is equipped with the magnetic actuator. In the article, the static and transient simulation analysis which includes the load force, and carried out prototype trial and test validation. At last, the results of simulation and test is given.


Author(s):  
Kengo Goda ◽  
Osamu Furuya ◽  
Kohei Imamura ◽  
Kenta Ishihana

At the present, base isolation system has been recognized by general earthquake resistant technique since the Great Hanshin Earthquake 1995. The seismic isolation will be aggressively applied to not only architectural and civil structures but also various structures, because the effectiveness on seismic safety had been demonstrated again in the Great East Japan Earthquake. In generally, although the base isolation system is divided into laminated rubber bearing type and friction sliding bearing type. In the case of former type, shape factor, maximum or minimum outer shapes and so on are restricted by the material characteristics in visco-elastic material. In general, the isolation structure is used in high damping rubber. However, we pay attention to base isolation using urethane elastomer. Urethane elastomer has excellent elasticity, mechanical strength, abrasion resistance, weather resistance, oil resistance, impact resistance the absorbent, anti-vibration and excellent low-temperature properties. Furthermore, it is possible to impart various characteristics by a combination of isocyanate and polyol and chain extender, requires no large-scale apparatus, it has the advantage molecular design is easy. In previous study, the research and development of laminated type base isolation device using urethane elastomer was carried out to upgrade a seismic safety for various structures. The fundamental characteristics was investigated from several loading test by using various experimental devices, and the design formula for the stiffness and equivalent damping coefficient is formulated as an approximate expression of mechanical characteristics until now. It was confirmed that urethane elastomer is not hardening up to 500% shear strain. Moreover, the experimental examination for aged deterioration in the urethane material has been continuously carried out. As the results, it was confirmed that the laminated type seismic isolation device using urethane elastomer is possible to develop as a practicable device from the stable mechanical properties as considering in design step. In this study, the small-scale laminated type base isolation device using urethane elastomer is advanced to the direction of further technical upgrading and of scale down for light-weight structure as a sever rack. The first stage, basic properties of the urethane elastomer has been investigated by loading test. Furthermore, the design equation is created by loading test using urethane elastomer. The validity of the design equation has been confirmed. The second stage, the compression creep test with laminated type base isolation device has been investigated to confirm an effect on light-weight mechanical devices.


Sign in / Sign up

Export Citation Format

Share Document