Heat Transfer Characteristic on the Surfaces near Endwall of a Scale Turbine Blade : Effect of Inlet Boundary Layer Thickness on Heat Transfer

2002 ◽  
Vol 2002 (0) ◽  
pp. 513-514
Author(s):  
Kohei SHOJI ◽  
Shingo YOSHIFUJI ◽  
Masakazu OBATA ◽  
Masaya KUMADA
1978 ◽  
Vol 100 (4) ◽  
pp. 690-696 ◽  
Author(s):  
A. D. Anderson ◽  
T. J. Dahm

Solutions of the two-dimensional, unsteady integral momentum equation are obtained via the method of characteristics for two limiting modes of light gas launcher operation, the “constant base pressure gun” and the “simple wave gun”. Example predictions of boundary layer thickness and heat transfer are presented for a particular 1 in. hydrogen gun operated in each of these modes. Results for the constant base pressure gun are also presented in an approximate, more general form.


Author(s):  
Joshua B. Anderson ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary Webster

The use of compound-angled shaped film cooling holes in gas turbines provides a method for cooling regions of extreme curvature on turbine blades or vanes. These configurations have received surprisingly little attention in the film cooling literature. In this study, a row of laid-back fanshaped holes based on an open-literature design, were oriented at a 45-degree compound angle to the approaching freestream flow. In this study, the influence of the approach flow boundary layer thickness and character were experimentally investigated. A trip wire and turbulence generator were used to vary the boundary layer thickness and freestream conditions from a thin laminar boundary layer flow to a fully turbulent boundary layer and freestream at the hole breakout location. Steady-state adiabatic effectiveness and heat transfer coefficient augmentation were measured using high-resolution IR thermography, which allowed the use of an elevated density ratio of DR = 1.20. The results show adiabatic effectiveness was generally lower than for axially-oriented holes of the same geometry, and that boundary layer thickness was an important parameter in predicting effectiveness of the holes. Heat transfer coefficient augmentation was highly dependent on the freestream turbulence levels as well as boundary layer thickness, and significant spatial variations were observed.


2005 ◽  
Vol 128 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Takayuki Tsutsui ◽  
Masafumi Kawahara

Heat transfer characteristics around a low aspect ratio cylindrical protuberance placed in a turbulent boundary layer were investigated. The diameters of the protuberance, D, were 40 and 80mm, and the height to diameter aspect ratio H∕D ranged from 0.125 to 1.0. The Reynolds numbers based on D ranged from 1.1×104 to 1.1×105 and the thickness of the turbulent boundary layer at the protuberance location, δ, ranged from 26 to 120mm for these experiments. In this paper we detail the effects of the boundary layer thickness and the protuberance aspect ratio on heat transfer. The results revealed that the overall heat transfer for the cylindrical protuberance reaches a maximum value when H∕δ=0.24.


1965 ◽  
Vol 7 (2) ◽  
pp. 127-130 ◽  
Author(s):  
B. H. Lee ◽  
P. D. Richardson

The practical relevance of investigations of the effect of oscillations on convective heat transfer is discussed. Some experiments on overall heat transfer from a horizontal heated circular cylinder in a transverse, horizontal standing sound field are reported. Observations of local effects of sound on boundary layer thickness and heat transfer are described, and a correlation of heat transfer spanning all sound intensities is suggested in the light of these observations. The correlation is fitted well by the data, and thus provides adducive evidence for the explanation of the phenomena observed.


Author(s):  
Tasawar Hayat ◽  
Muhammad Farooq ◽  
Ahmad Alsaedi

Purpose – The purpose of this paper is to analyze the melting heat transfer in the stagnation-point flow with double-diffusive convection. Design/methodology/approach – Series solutions for velocity, temperature and concentration are constructed via homotopy analysis method. Findings – The authors observed that the behaviors of N, ?2 and M on the velocity and boundary layer thickness are qualitatively similar. Further, for A<1 the velocity profile and boundary layer thickness increase with the increase of A. However, when A>1 then the velocity profile increases but the boundary layer thickness decreases when A is increased. Originality/value – This analysis has not been discussed in the literature previously.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Krishnendu Bhattacharyya

The two-dimensional magnetohydrodynamic (MHD) stagnation-point flow of electrically conducting non-Newtonian Casson fluid and heat transfer towards a stretching sheet have been considered. The effect of thermal radiation is also investigated. Implementing similarity transformations, the governing momentum, and energy equations are transformed to self-similar nonlinear ODEs and numerical computations are performed to solve those. The investigation reveals many important aspects of flow and heat transfer. If velocity ratio parameter (B) and magnetic parameter (M) increase, then the velocity boundary layer thickness becomes thinner. On the other hand, for Casson fluid it is found that the velocity boundary layer thickness is larger compared to that of Newtonian fluid. The magnitude of wall skin-friction coefficient reduces with Casson parameter (β). The velocity ratio parameter, Casson parameter, and magnetic parameter also have major effects on temperature distribution. The heat transfer rate is enhanced with increasing values of velocity ratio parameter. The rate of heat transfer is enhanced with increasing magnetic parameter M for B > 1 and it decreases with M for B < 1. Moreover, the presence of thermal radiation reduces temperature and thermal boundary layer thickness.


Sign in / Sign up

Export Citation Format

Share Document