scholarly journals Hybrid Control of a Robotis Manipulator by the Neural Network Model. 6th Report. Hierarchical Intelligent Control System.

1992 ◽  
Vol 58 (549) ◽  
pp. 1442-1449 ◽  
Author(s):  
Takanori SHIBATA ◽  
Toshio FUKUDA ◽  
Kazuhiro KOSUGE ◽  
Fumihito ARAI ◽  
Masatoshi TOKITA ◽  
...  
2020 ◽  
pp. 81-86
Author(s):  
Yu.G. Kabaldin ◽  
D.A. Shatagin ◽  
M.S. Anosov ◽  
A.M. Kuz'mishina

The formation of chips during the processing of various materials was studied. The relationship between the type of chips, the type of crystal lattice of the material and the number of sliding systems is shown. A neural network model of chip formation is developed, which allows predicting the type of chips. An intelligent control system for the process of chip formation during cutting is proposed. Keywords: chip formation, crystal lattice, neural network model, type of chips. [email protected]


2011 ◽  
Vol 239-242 ◽  
pp. 2867-2872
Author(s):  
Hong Lei Sun ◽  
Chun Jian Su ◽  
Rui Xue Zhai

The blueprint for an intelligent control system of cap-shape bending has been advanced in this paper using neural network technology, aiming at an accurate control of bending springback, the prominent problem during the forming process for the cap-shape bending of sheet metal. The feed-forward neural network of real-time identification for material performance parameters and the friction coefficient have been established. The neural network identifies the parameters for real-time needed material performance, which utilizes the measurability of the physical quantities, and predicts the parameters for optimum technology, so a satisfied accuracy of convergence has been achieved. The intelligent control experimentation system of cap-shape bending has been established, the validity of which has been tested for four kinds of materials. The result of the tests proves the feasibility of the blueprint of the intelligent control system.


2013 ◽  
Vol 709 ◽  
pp. 862-866
Author(s):  
Teng Jing ◽  
Fang Gun Wang ◽  
Kun Xi Qian

With the development of heart pumps, more and more commercial artificial heart have been applied to clinic use. However, most of the products produce some discomfort to human body, which coudn’t meet the physiological requirements of patients. Therefore, further improvement and enhancement for these products are needed and adopting bionic control using neural network is an effective method to improve heart pumps’ comfort. A neural network model was established in this paper according to the relationship among the pressure head, the motor power and the rotating speed using using Based on neural network software Neuroshell2. Based on the defined appropriate activation function, a lot of data were studied and trained for optimization of the neural network model and determination of weights and deviations . Finally, the bionic control system was built and the experiments of the control system were conducted. The results reveal that the error measured values and the actual values was within 5% and acceptable and that the bionic control system using neural network is proved to improve the the comfort after implantation of blood pumps.


Author(s):  
Mostafa H. Tawfeek ◽  
Karim El-Basyouny

Safety Performance Functions (SPFs) are regression models used to predict the expected number of collisions as a function of various traffic and geometric characteristics. One of the integral components in developing SPFs is the availability of accurate exposure factors, that is, annual average daily traffic (AADT). However, AADTs are not often available for minor roads at rural intersections. This study aims to develop a robust AADT estimation model using a deep neural network. A total of 1,350 rural four-legged, stop-controlled intersections from the Province of Alberta, Canada, were used to train the neural network. The results of the deep neural network model were compared with the traditional estimation method, which uses linear regression. The results indicated that the deep neural network model improved the estimation of minor roads’ AADT by 35% when compared with the traditional method. Furthermore, SPFs developed using linear regression resulted in models with statistically insignificant AADTs on minor roads. Conversely, the SPF developed using the neural network provided a better fit to the data with both AADTs on minor and major roads being statistically significant variables. The findings indicated that the proposed model could enhance the predictive power of the SPF and therefore improve the decision-making process since SPFs are used in all parts of the safety management process.


2011 ◽  
Vol 213 ◽  
pp. 419-426
Author(s):  
M.M. Rahman ◽  
Hemin M. Mohyaldeen ◽  
M.M. Noor ◽  
K. Kadirgama ◽  
Rosli A. Bakar

Modeling and simulation are indispensable when dealing with complex engineering systems. This study deals with intelligent techniques modeling for linear response of suspension arm. The finite element analysis and Radial Basis Function Neural Network (RBFNN) technique is used to predict the response of suspension arm. The linear static analysis was performed utilizing the finite element analysis code. The neural network model has 3 inputs representing the load, mesh size and material while 4 output representing the maximum displacement, maximum Principal stress, von Mises and Tresca. Finally, regression analysis between finite element results and values predicted by the neural network model was made. It can be seen that the RBFNN proposed approach was found to be highly effective with least error in identification of stress-displacement of suspension arm. Simulated results show that RBF can be very successively used for reduction of the effort and time required to predict the stress-displacement response of suspension arm as FE methods usually deal with only a single problem for each run.


2014 ◽  
Vol 19 (3) ◽  
pp. 575-584 ◽  
Author(s):  
P. Gierlak ◽  
M. Muszyńska ◽  
W. Żylski

Abstract In this paper, to solve the problem of control of a robotic manipulator’s movement with holonomical constraints, an intelligent control system was used. This system is understood as a hybrid controller, being a combination of fuzzy logic and an artificial neural network. The purpose of the neuro-fuzzy system is the approximation of the nonlinearity of the robotic manipulator’s dynamic to generate a compensatory control. The control system is designed in such a way as to permit modification of its properties under different operating conditions of the two-link manipulator


Sign in / Sign up

Export Citation Format

Share Document