scholarly journals Predicting impacts of future climate change on the distribution of the widespread selaginellas (Selaginella ciliaris and S. plana) in Southeast Asia

2018 ◽  
Vol 19 (5) ◽  
pp. 1960-1977
Author(s):  
AHMAD DWI SETYAWAN ◽  
JATNA SUPRIATNA ◽  
NISYAWATI NISYAWATI ◽  
SUTARNO SUTARNO ◽  
ILYAS NURSAMSI

Abstract. Setyawan AD, Supriatna J, Nisyawati, Sutarno, Sugiyarto, Nursamsi I. 2018. Predicting impacts of future climate change on the distribution of the widespread selaginellas (Selaginella ciliaris and S. plana) in Southeast Asia. Biodiversitas 19: 1960-1977. The current global climate is moving towards dangerous and unprecedented conditions that have been seen as a potentially devastating threat to the environment and all living things. Selaginella is a fern-allies that needs water as a medium for fertilization, hence its distribution is presumed to be affected by climate change. In Southeast Asia (SEA), there are two widely distributed selaginellas, namely Selaginella ciliaris and S. plana. S. ciliaris is a small herb (up to 4 cm), annual, abundant during the rainy season, and found in the middle-high plains, whereas S. plana is a stout large herb (up to 80 cm), perennial, and mainly found in the lowlands. The purpose of this study was to determine the potential niche distribution of S. ciliaris and S. plana under current climatic conditions, and to predict its future distribution under the impacts of climate change. We used Maxent software along with bioclimatic, edaphic, and UV radiation variables to model the potential niche distribution of those two selaginellas under current and future predictions climate conditions. We generated future predictions under four detailed bioclimatic scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) over three times intervals (2030, 2050, 2080). The results showed that future climatic conditions in the SEA had been predicted to significantly disrupt the distribution of suitable habitat of S. ciliaris and S. plana, and alter their geographic distribution patterns. Although some areas were predicted to become suitable habitat in the early period of future climate change, the overall projections show adverse effects of future climate conditions on the suitable habitat distribution of S. ciliaris and S. plana, as estimated losses of suitable habitat will be higher than the gains.

2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


2015 ◽  
Vol 61 (4) ◽  
pp. 669-689 ◽  
Author(s):  
Pamela D. Noyes ◽  
Sean C. Lema

Abstract Global climate change is impacting organisms, biological communities and ecosystems around the world. While most research has focused on characterizing how the climate is changing, including modeling future climatic conditions and predicting the impacts of these conditions on biodiversity, it is also the case that climate change is altering the environmental impacts of chemical pollution. Future climate conditions are expected to influence both the worldwide distribution of chemicals and the toxicological consequences of chemical exposures to organisms. Many of the environmental changes associated with a warming global climate (e.g., increased average – and possibly extreme – temperatures; intense periods of drier and wetter conditions; reduced ocean pH; altered salinity dynamics in estuaries) have the potential to enhance organism susceptibility to chemical toxicity. Additionally, chemical exposures themselves may impair the ability of organisms to cope with the changing environmental conditions of the shifting climate. Such reciprocity in the interactions between climate change and chemicals illustrates the complexity inherent in predicting the toxicological consequences of chemical exposures under future climate scenarios. Here, we summarize what is currently known about the potential reciprocal effects of climate change and chemical toxicity on wildlife, and depict current approaches and ongoing challenges for incorporating climate effects into chemical testing and assessment. Given the rapid pace of new man-made chemistries, the development of accurate and rapid methods to evaluate multiple chemical and non-chemical stressors in an ecologically relevant context will be critical to understanding toxic and endocrine-disrupting effects of chemical pollutants under future climate scenarios.


The Condor ◽  
2021 ◽  
Author(s):  
Natália Stefanini Da Silveira ◽  
Maurício Humberto Vancine ◽  
Alex E Jahn ◽  
Marco Aurélio Pizo ◽  
Thadeu Sobral-Souza

Abstract Bird migration patterns are changing worldwide due to current global climate changes. Addressing the effects of such changes on the migration of birds in South America is particularly challenging because the details about how birds migrate within the Neotropics are generally not well understood. Here, we aim to infer the potential effects of future climate change on breeding and wintering areas of birds that migrate within South America by estimating the size and elevations of their future breeding and wintering areas. We used occurrence data from species distribution databases (VertNet and GBIF), published studies, and eBird for 3 thrush species (Turdidae; Turdus nigriceps, T. subalaris, and T. flavipes) that breed and winter in different regions of South America and built ecological niche models using ensemble forecasting approaches to infer current and future potential distributions throughout the breeding and wintering periods of each species. Our findings point to future shifts in wintering and breeding areas, mainly through elevational and longitudinal changes. Future breeding areas for T. nigriceps, which migrates along the Andes Mountains, will be displaced to the west, while breeding displacements to the east are expected for the other 2 species. An overall loss in the size of future wintering areas was also supported for 2 of the species, especially for T. subalaris, but an increase is anticipated for T. flavipes. Our results suggest that future climate change in South America will require that species shift their breeding and wintering areas to higher elevations in addition to changes in their latitudes and longitude. Our findings are the first to show how future climate change may affect migratory birds in South America throughout the year and suggest that even closely related migratory birds in South America will be affected in different ways, depending on the regions where they breed and overwinter.


Author(s):  
STAVROS DEMERTZIS ◽  
VASILIKI DEMERTZI ◽  
KONSTANTINOS DEMERTZIS

Global climate change has already had observable effects on the environment. Glaciers have shrunk, ice on rivers and lakes is breaking up earlier, plant and animal ranges have shifted and trees are flowering sooner. Under these conditions, air pollution is likely to reach levels that create undesirable living conditions. Anthropogenic activities, such as industry, release large amounts of greenhouse gases into the atmosphere, increasing the atmospheric concentrations of these gases, thus significantly enhancing the greenhouse effect, which has the effect of increasing air heat and thus the speedup of climate change. The use of sophisticated data analysis methods to identify the causes of extreme pollutant values, the correlation of these values with the general climatic conditions and the general malfunctions that can be caused by prolonged air pollution can give a clear picture of current and future climate change. This paper presents a thorough study of preprocessing steps of data analytics and the appropriate big data architectures that are appropriate for the research study of Climate Change and Atmospheric Science.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dan-Dan Yu ◽  
Shan Li ◽  
Zhong-Yang Guo

The evaluation of climate comfort for tourism can provide information for tourists selecting destinations and tourism operators. Understanding how climate conditions for tourism evolve is increasingly important for strategic tourism planning, particularly in rapidly developing tourism markets like China in a changing climate. Multidimensional climate indices are needed to evaluate climate for tourism, and previous studies in China have used the much criticized “climate index” with low resolution climate data. This study uses the Holiday Climate Index (HCI) and daily data from 775 weather stations to examine interregional differences in the tourist climate comfortable period (TCCP) across China and summarizes the spatiotemporal evolution of TCCP from 1981 to 2010 in a changing climate. Overall, most areas in China have an “excellent” climate for tourism, such that tourists may visit anytime with many choices available. The TCCP in most regions shows an increasing trend, and China benefits more from positive effects of climate change in climatic conditions for tourism, especially in spring and autumn. These results can provide some scientific evidence for understanding human settlement environmental constructions and further contribute in improving local or regional resilience responding to global climate change.


2019 ◽  
Vol 76 (4) ◽  
Author(s):  
Ying Guo ◽  
Yue Lu ◽  
Yousry A. El-Kassaby ◽  
Lei Feng ◽  
Guibing Wang ◽  
...  

Abstract Key message We developed a climatic response function using 20-year tree height observed from 45Ginkgo bilobaplantations in China and used it to predict the growth and habitat responses to anticipated climate change. We projected northward and upward shifts in the species habitat and productive areas, but a dramatic contraction of the species distribution is unlikely to occur at least during the present century. Context Ginkgo biloba is the only living species in the division Ginkgophyta. The species exists in small natural populations in southeastern China but is cultivated across China and the world. The species’ future under climate change is of concern. Aims This study was initiated to model the species’ growth response to climate change and to predict its range of suitable habitat under future climates. Methods Using height data from 45 20 years old plantations growing under a wide range of climatic conditions across China, we developed univariate and bivariate climatic response functions to identify the climate requirements of the species. Results According to the amount of variance explained (> 70%) and the high level of agreement (> 99%) with independent species occurrence coordinates, the developed climate response function was highly accurate and credible. Projections for future periods (2011–2040, 2041–2070, and 2071–2100) under the Representative Concentration Pathway 4.5 (RCP4.5) scenario indicated that the areas of potential suitable habitat would increase (25–67 million hectares). It would also be associated with northward (0.21–0.62° in latitude) and elevational (24–75 m) shifts. Conclusion Global climate change is projected to increase the area of potential suitable habitats for Ginkgo and shift its spatial distributions northward and upward.


2020 ◽  
Vol 12 (4) ◽  
pp. 1491
Author(s):  
Xuhui Zhang ◽  
Haiyan Wei ◽  
Zefang Zhao ◽  
Jing Liu ◽  
Quanzhong Zhang ◽  
...  

The potential distribution of the invasive plant Anredera cordifolia (Tenore) Steenis was predicted by Random Forest models under current and future climate-change pathways (i.e., RCP4.5 and RCP8.5 of 2050s and the 2070s). Pearson correlations were used to select variables; the prediction accuracy of the models was evaluated by using AUC, Kappa, and TSS. The results show that suitable future distribution areas are mainly in Southeast Asia, Eastern Oceania, a few parts of Eastern Africa, Southern North America, and Eastern South America. Temperature is the key climatic factor affecting the distribution of A. cordifolia. Important metrics include mean temperature of the coldest quarter (0.3 °C ≤ Bio11 ≤ 22.9 °C), max temperature of the warmest month (17.1 °C ≤ Bio5 ≤ 35.5 °C), temperature annual range (10.7 °C ≤ Bio7 ≤ 33 °C), annual mean air temperature (6.8 °C ≤ Bio1 ≤ 24.4 °C), and min temperature of coldest month (−2.8 °C ≤ Bio6 ≤ 17.2 °C). Only one precipitation index (Bio19) was important, precipitation of coldest quarter (7 mm ≤ Bio19 ≤ 631 mm). In addition, areas with strong human activities are most prone to invasion. This species is native to Brazil, but has been introduced in Asia, where it is widely planted and has escaped from cultivation. Under the future climate scenarios, suitable habitat areas of A. cordifolia will expand to higher latitudes. This study can provide a reference for the rational management and control of A. cordifolia.


2016 ◽  
Vol 164 ◽  
pp. 317-330 ◽  
Author(s):  
Pradip Adhikari ◽  
Srinivasulu Ale ◽  
James P. Bordovsky ◽  
Kelly R. Thorp ◽  
Naga R. Modala ◽  
...  

2020 ◽  
Author(s):  
Scott R. Saleska ◽  
Natalia Restrepo-Coupe ◽  
Fernanda V. Barros ◽  
Paulo R. L. Bittencourt ◽  
Neill Prohaska ◽  
...  

<p>Scaling from individuals or species to ecosystems is a fundamental challenge of modern ecology and understanding tropical forest response to drought is a key challenge of predicting responses to global climate change.  We here synthesize our developing understanding of these twin challenges by examining individual and ecosystem responses to the 2015 El Niño drought at two sites in the central Amazon of Brazil, near Manaus and Santarem, which span a precipitation gradient from moderate (Manaus) to long (Santarem) dry seasons.  We will focus on how ecosystem water and carbon cycling, measured by eddy flux towers, emerges from individual trait-based responses, including photosynthetic responses of individual leaves, and water cycle responses in terms of stomatal conductance and hydraulic xylem embolism resistance.  We found the Santarem forest (with long dry seasons) responded strongly to drought: sensible heat values significantly increased and evapotranspiration decreased.  Consistent with this, we also observed reductions in photosynthetic activity and ecosystem respiration, showing levels of stress not seen in the nearly two decades since measurements started at this site.  Forests at the Manaus site showed significant, however, less consistent reductions in water and carbon exchange and a more pronounced water deficit.  We report an apparent community level forest composition selecting for assemblies of traits and taxa manifest of higher drought tolerance at Santarem, compared to the Manaus forest (short dry seasons) and other forest sites across Amazonia.  These results suggest that we may be able to use community trait compositions (as selected by past climate conditions) and environmental threshold values (e.g. cumulative rainfall, atmospheric moisture and radiation) as to help forecast ecosystem responses to future climate change.</p>


Sign in / Sign up

Export Citation Format

Share Document