Abstract: Global Basins Research Network: Advancing the Science of Fluid Flow Prediction in Sedimentary Basins 

AAPG Bulletin ◽  
1998 ◽  
Vol 82 (1998) ◽  
Author(s):  
Nunn, Jeffrey A. and Lawrence M. Ca
2021 ◽  
pp. 120642
Author(s):  
Peng Yang ◽  
Keyu Liu ◽  
Zhen Li ◽  
Kai Rankenburg ◽  
Brent I.A. McInnes ◽  
...  

2019 ◽  
Vol 98 ◽  
pp. 01017
Author(s):  
Mário A. Gonçalves ◽  
Maja Vuckovic ◽  
Alfonso Fiorelli ◽  
Pedro Barrulas ◽  
José Mirão

Carbonate rocks in sedimentary basins are reactive and can record complex histories of events associated with fluid flow in these basins. These include processes of dolomitization and dedolomitization. In this work we provide some preliminary data where distinct calcite and dolomite generations in the Jurassic Lusitanian Basin were analysed by LA-ICP-MS for trace elements in order to characterize chemical signatures of fluid-mineral interaction. It was observed that different carbonate generations can preserve the range of certain trace metal concentrations, but later calcites have distinctly higher contents in REE, Th and U, and Ba. Dolomites also show distinct chemical signatures but lack of analytical and spatial resolution does not allow quantification of the precursor calcite relicts. However, these processes point to the action of basinal fluids triggered by distinct tectonic episodes and associated volcanic activity.


2015 ◽  
Vol 19 (2) ◽  
pp. 285-298 ◽  
Author(s):  
Evgeny Kikinzon ◽  
Yuri Kuznetsov ◽  
Serguei Maliassov ◽  
Prasad Sumant

2020 ◽  
Vol 90 (6) ◽  
pp. 629-650
Author(s):  
Katie J. Pevehouse ◽  
Dustin E. Sweet ◽  
Branimir Šegvić ◽  
Charles C. Monson ◽  
Giovanni Zanoni ◽  
...  

ABSTRACT Precambrian (1.4 to 1.5 Ga) granite and rhyolite in the St. Francois Mountains at the northeast corner of the Ozark Plateau in Missouri has been altered down to a depth up to 8 meters below the Great Unconformity (the contact between Paleozoic sedimentary rock and underlying Precambrian). Petrographic, geochemical, and mineralogic data indicate that at least two events generated this alteration: 1) surficial weathering due to subaerial exposure of the granite before Cambrian burial—this material is preserved as a paleosol; and 2) alteration due to reaction with basinal fluids channeled along the unconformity from nearby sedimentary basins long after burial by Paleozoic strata. To assess the variation between surficial weathering and basinal fluid alteration, we measured and sampled for petrologic, geochemical, and mineralogic data in the rock at and just below the Great Unconformity at three paleoelevations. Whole-rock geochemical oxide and X-ray diffraction data indicate that K-metasomatism and highly crystalline illite occurred in each profile. The K increase reflects crystallization of authigenic feldspar and illite from basinal fluids that were channeled along the Great Unconformity during younger Paleozoic fluid-flow events. Each profile also exhibits an upward increase in altered feldspar crystals and highly crystalline kaolinite, and an upward decrease in Ca and Na. Such changes reflect soil formation due to reaction with meteoric water before Cambrian burial, indicating that the altered granite was a paleosol before Paleozoic basinal fluid-flow events. Notably, the paleosol at the highest paleoelevation displays the least amount of paleoweathering and the paleosol at the lowest displays the greatest amount of paleoweathering. These results demonstrate that not only can characteristics of the paleosol just below the Great Unconformity be recognized in the St. Francois Mountains, despite subsequent alteration, but also it is possible to detect variations in soil thickness that were controlled by slope steepness and, therefore, water availability and/or soil creep or failure. This spatial relationship is compatible with studies of modern soils which indicate that soil character varies with position on a slope.


1993 ◽  
Vol 86 (1-2) ◽  
pp. 137-158 ◽  
Author(s):  
Knut Bjørlykke

Sign in / Sign up

Export Citation Format

Share Document