subaerial exposure
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 32)

H-INDEX

24
(FIVE YEARS 2)

Abstract In the Middle Anisian, extensional tectonic movements led to the development of isolated carbonate platforms in the area of the southwestern part of the Transdanubian Range. The platforms are made up of meter-scale peritidal–lagoonal cycles bounded by subaerial exposure surfaces. One of the platform successions (Tagyon Platform) consists predominantly of limestone that contains partially and completely dolomitized intervals, whereas the other one (Kádárta Platform) is completely dolomitized. Drowning of the platforms took place in the latest Pelsonian to the early Illyrian interval when submarine highs came into existence and then condensed pelagic carbonate successions with volcanic tuff interbeds were deposited on the top of the drowned platforms from the late Illyrian up to the late Ladinian. The comparative study of dolomitization of the coeval platforms, affected by different diagenetic histories, is discussed in the current paper. Traces of probably microbially-mediated early dolomitization were preserved in the slightly dolomitized successions of the Tagyon Platform. This might also have been present in the successions of the Kádárta Platform, but was overprinted by geothermal dolomitization along the basinward platform margin and by pervasive reflux dolomitization in the internal parts of the platform. The Carnian evolution of the two submarine highs was different, and this may have significantly influenced the grade of the shallow to deeper burial dolomitization.


2021 ◽  
Author(s):  
Andrea Dutton ◽  
Alexandra Villa ◽  
Peter M. Chutcharavan

Abstract. This paper provides a summary of published sea level archives representing the past position of sea level during the Last Interglacial sea level highstand in the Bahamas, Turks and Caicos, and the eastern (Atlantic) coast of Florida, USA. These data were assembled as part of a community effort to build the World Atlas of Last Interglacial Shorelines (WALIS) database. Shallow marine deposits from this sea level highstand are widespread across the region and are dominated by carbonate sedimentary features. In addition to depositional (constructional) sedimentary indicators of past sea level position, there is also evidence of erosion, dissolution, and/or subaerial exposure in places that can place an upper limit on the position of sea level. The sea level indicators that have been observed within this region and attributed to Marine Isotope Stage (MIS) 5e include corals, oolites, and other coastal sedimentary features. Here we compile a total of 50 relative sea level indicators including 36 in the Bahamas, three in West Caicos, and a remaining 10 for the eastern seaboard of Florida. We have also compiled U-Th age data for 24 fossil corals and 56 oolite samples. While some of these archives have been dated using U-Th disequilibrium methods, amino acid racemization, or optically stimulated luminescence, other features have more uncertain ages that have been deduced in the context of regional mapping and stratigraphy. Sedimentary archives in this region that constrain the elevation of the past position of sea level are associated with uncertainties that range from a couple decimeters to several meters. Across the Bahamas and on West Caicos, one of the observations that emerges from this compilation is that estimation of sea level position in this region during Marine Isotope Stage 5e is complicated by widespread stratigraphic evidence for at least one sea level oscillation. This evidence is defined by submarine features separated by erosion and subaerial exposure, meaning that there were likely multiple distinct peaks in sea level rather than just one. To this end, the timing of these individual sea level indicators becomes important when compiling and comparing data across the region given that different archives may have formed during different sub-orbital peaks in sea level.


2021 ◽  
Author(s):  
◽  
John Gordon McPherson

<p>The Aztec Siltstone (late Devonian) crops out for 150 km along the Transantarctic Mountains, between the Mawson and Mulock Glaciers of southern Victoria Land, Antarctica. It is the uppermost formation of the Taylor Group, the lower of the two subdivisions of the Beacon Supergroup of southern Victoria Land. The formation consists largely of fine to medium-grained sandstone, and greyish red (10R 4/2), grey (N5), and greenish grey (5G 6/1) siltstone and claystone. Other lithologies include carbonaceous siltstone and claystone, limestone and intraformational conglomerate. Conchostracans, fish fossils, plant fragments, and gypsum lenses are present also. Cross-stratification, horizontal stratification, channelling, and "fining-upwards" cycles indicate deposition from shallow, high sinuosity (tortuous), meandering streams that migrated laterally across a broad alluvial plain. The sandstone beds are laterally accreted channel deposits, whereas the siltstone and claystone beds represent overbank deposition by vertical accretion in the interchannel areas of the floodbasin. Other floodbasin deposits include lacustrinal sediments from pluvial ponds and ox-bow lakes, and palustrinal sediments from the backswamps. Overbank deposition of bed load material formed levees, and stream avulsion and crevassing during flood stage produced crevasse-splay deposits. The sandstone beds are quartzarenites, with detrital grains consisting largely of plutonic quartz; other grains include chert, feldspar, metamorphic quartz and a trace of heavy minerals. Sandstone textures average fine-grained and well sorted, although sandstone with textural inversion is common. Compositional and textural characteristics indicate that the sandstone is a product of the reworking of older quartzarenite in the source area. Subaerial exposure was a feature of the fine-grained floodbasin sediments; the evidence includes the abundance of mudcracks, and a variety of soil features. The latter include extensive kankar ('calichea') horizons, pseudo- or wavey bedding structures, a compositional and textural similarity to modern soils, vein networks (considered to be a product of deep cracking in the unconsolidated. substratum), burrowing, and root horizons with in some cases associated plant fragments. The kankar ('calichea') suggests that there was a period of prolonged subaerial exposure and soil development which followed the deposition of fine-grained, fine member lithologies of the "fining upwards" cycles. This period was probably in the range 5,000 to 50,000 years. The Aztec Siltstone is a typical "variegated" red-bed sequence, containing interbedded red and drab fine-grained lithologies. The fine-grained drab lithologies consist of quartz grains set in a matrix of green illitic and chloritic clay. The colour in the interbedded red and grey siltstone and claystone results from a haematite pigment, which in the red samples is present in a concentration sufficient to completely mask the green colour of the clay matrix. The reddening is believed to have been a penecontemporaneous process that took place in the floodbasin sediments during their prolonged subaerial exposure under a hot and seasonally wet and dry (savanna) climate. The haematitic pigment was derived from the in situ and progressive dehydration of detrital amorphous and poorly crystalline brown hydrated ferric oxide in those sediments which maintained an oxidizing environment and were above the ground-water table during the dehydration process. Sediments which remained in a water-logged state, below the water table, and in association with organic matter, were invariably reduced and lost their iron oxide in solution. Later post-depositional reduction of some red lithologies produced reduction spheres and channels, reduced burrows and vein networks, and the reduced layers immediately underlying the scoured surface at the base of the channel sandstones. Some chemical redistribution of iron contributed to the variegated and mottled horizons of the formation. The mineral composition of adjacent red and drab lithologies is essentially the same except for the haematite constituent. The red average 5.86 ([delta] = 1.09) percent total Fe (as Fe2O3), of, which 3.01 ([delta] = 0.63) percent is as haematite pigment, 1.57 percent Fe2O3 is in a combined form (probably as ferric silicates), and 1 14 ([delta] = 0.57) percent is as FeO. The green average 3.65 ([delta] = 1.81) percent total Fe (as Fe2O3) of which approximately 0.27 percent is as haematite pigment, approximately 1.4 percent Fe2O3 is in a combined form, and 1.77 ([delta] = 1.37) percent is as FeO. In the majority of the green lithologies the free ferric oxide (as haematite or hydrated ferric oxide) was removed in solution during reduction, and at the same time minor amounts of clay matrix were also leached out.</p>


2021 ◽  
Author(s):  
◽  
John Gordon McPherson

<p>The Aztec Siltstone (late Devonian) crops out for 150 km along the Transantarctic Mountains, between the Mawson and Mulock Glaciers of southern Victoria Land, Antarctica. It is the uppermost formation of the Taylor Group, the lower of the two subdivisions of the Beacon Supergroup of southern Victoria Land. The formation consists largely of fine to medium-grained sandstone, and greyish red (10R 4/2), grey (N5), and greenish grey (5G 6/1) siltstone and claystone. Other lithologies include carbonaceous siltstone and claystone, limestone and intraformational conglomerate. Conchostracans, fish fossils, plant fragments, and gypsum lenses are present also. Cross-stratification, horizontal stratification, channelling, and "fining-upwards" cycles indicate deposition from shallow, high sinuosity (tortuous), meandering streams that migrated laterally across a broad alluvial plain. The sandstone beds are laterally accreted channel deposits, whereas the siltstone and claystone beds represent overbank deposition by vertical accretion in the interchannel areas of the floodbasin. Other floodbasin deposits include lacustrinal sediments from pluvial ponds and ox-bow lakes, and palustrinal sediments from the backswamps. Overbank deposition of bed load material formed levees, and stream avulsion and crevassing during flood stage produced crevasse-splay deposits. The sandstone beds are quartzarenites, with detrital grains consisting largely of plutonic quartz; other grains include chert, feldspar, metamorphic quartz and a trace of heavy minerals. Sandstone textures average fine-grained and well sorted, although sandstone with textural inversion is common. Compositional and textural characteristics indicate that the sandstone is a product of the reworking of older quartzarenite in the source area. Subaerial exposure was a feature of the fine-grained floodbasin sediments; the evidence includes the abundance of mudcracks, and a variety of soil features. The latter include extensive kankar ('calichea') horizons, pseudo- or wavey bedding structures, a compositional and textural similarity to modern soils, vein networks (considered to be a product of deep cracking in the unconsolidated. substratum), burrowing, and root horizons with in some cases associated plant fragments. The kankar ('calichea') suggests that there was a period of prolonged subaerial exposure and soil development which followed the deposition of fine-grained, fine member lithologies of the "fining upwards" cycles. This period was probably in the range 5,000 to 50,000 years. The Aztec Siltstone is a typical "variegated" red-bed sequence, containing interbedded red and drab fine-grained lithologies. The fine-grained drab lithologies consist of quartz grains set in a matrix of green illitic and chloritic clay. The colour in the interbedded red and grey siltstone and claystone results from a haematite pigment, which in the red samples is present in a concentration sufficient to completely mask the green colour of the clay matrix. The reddening is believed to have been a penecontemporaneous process that took place in the floodbasin sediments during their prolonged subaerial exposure under a hot and seasonally wet and dry (savanna) climate. The haematitic pigment was derived from the in situ and progressive dehydration of detrital amorphous and poorly crystalline brown hydrated ferric oxide in those sediments which maintained an oxidizing environment and were above the ground-water table during the dehydration process. Sediments which remained in a water-logged state, below the water table, and in association with organic matter, were invariably reduced and lost their iron oxide in solution. Later post-depositional reduction of some red lithologies produced reduction spheres and channels, reduced burrows and vein networks, and the reduced layers immediately underlying the scoured surface at the base of the channel sandstones. Some chemical redistribution of iron contributed to the variegated and mottled horizons of the formation. The mineral composition of adjacent red and drab lithologies is essentially the same except for the haematite constituent. The red average 5.86 ([delta] = 1.09) percent total Fe (as Fe2O3), of, which 3.01 ([delta] = 0.63) percent is as haematite pigment, 1.57 percent Fe2O3 is in a combined form (probably as ferric silicates), and 1 14 ([delta] = 0.57) percent is as FeO. The green average 3.65 ([delta] = 1.81) percent total Fe (as Fe2O3) of which approximately 0.27 percent is as haematite pigment, approximately 1.4 percent Fe2O3 is in a combined form, and 1.77 ([delta] = 1.37) percent is as FeO. In the majority of the green lithologies the free ferric oxide (as haematite or hydrated ferric oxide) was removed in solution during reduction, and at the same time minor amounts of clay matrix were also leached out.</p>


Author(s):  
Franziska Heuer ◽  
Lucyna Leda ◽  
Hemen Moradi-Salimi ◽  
Jana Gliwa ◽  
Vachik Hairapetian ◽  
...  

AbstractSections at Baghuk Mountain, 45 km NNW of Abadeh (Central Iran), have excellent exposures of fossiliferous marine Late Permian to Early Triassic sedimentary successions. Detailed bed-by-bed sampling enables the analysis of microfacies changes of three successive rock units across the Permian–Triassic boundary. The Late Permian Hambast Formation is mainly the result of biogenic carbonate production. Its carbonate microfacies is dominated by biogen-rich and bioturbated nodular limestones, indicating a well-oxygenated aphotic to dysphotic environment. The biogen-dominated carbonate factory in the Permian ceased simultaneously with the main mass extinction pulse, which is marked by a sharp contact between the Hambast-Formation and the overlaying Baghuk Member (= ‘Boundary Clay’). The clay and silt deposits of the Baghuk Member with some carbonate beds show only a few signs of bioturbation or relics of benthic communities. The Early Triassic Claraia Beds are characterised by a partly microbially induced carbonate production, which is indicated by frequent microbialite structures. The depositional environment does not provide evidence of large amplitude changes of sea level or subaerial exposure during the Permian–Triassic boundary interval. The deposition of the Baghuk Mountain sediments took place in a deep shelf environment, most of the time below the storm wave base.


2021 ◽  
Vol 36 (4) ◽  
Author(s):  
Lihong Liu ◽  
Chunlian Wang ◽  
Keke Huang ◽  
Zhili Du

AbstractDedolomites, the replacement of dolomite by calcite, are widely distributed in the Ordovician Majiagou Formation of the southeastern Ordos Basin, China, which critically affects reservoir quality throughout the region. Two types of dedolomites were recognized in the upper 100 m of the Majiagou Formation, namely brecciated dedolomite and crystalline dedolomite. The petrographic and geochemical data reveal that the investigated dedolomites are often associated with clay minerals and dissolution-collapse breccia, indicating their close relationship with erosional unconformities. The relative negative δ18O and δ13C values and relative high Fe, Mn contents of dedolomite with respect to corresponding dolomite are interpreted as being result from meteoric phreatic water involvement. The dedolomitization process related to subaerial exposure is conventionally interpreted to be formed by dolomite dissolution and calcite precipitation. The rhombic shape crystals in the brecciated dedolomite was formed by an Mg2+-loss process under evaporite solution conditions, which retain the rhombic shape of the dolomite. The crystalline dedolomites, however, were formed by dissolution/precipitation and recrystallization process to form medium to coarse calcite mosaic with very low intercrystalline porosity. The resulting fabrics are mainly controlled by the paleo-topography. The precursor dolomite of the crystalline dedolomite is primarily recrystallized mudstone, which is more soluble and favorable for calcite precipitation. The crystalline dedolomite mostly occurs in the low paleotopographic locations, where the karst-saturated water with respect to CaCO3 is more concentrated, occluding the remaining porosity when excess calcium is supplied. It’s, therefore, recommended to implement drilling in tectonic highland and avoid low paleotopographic locations.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jussi Hovikoski ◽  
Michael B. W. Fyhn ◽  
Henrik Nøhr-Hansen ◽  
John R. Hopper ◽  
Steven Andrews ◽  
...  

AbstractThe paleoenvironmental and paleogeographic development of the Norwegian–Greenland seaway remains poorly understood, despite its importance for the oceanographic and climatic conditions of the Paleocene–Eocene greenhouse world. Here we present analyses of the sedimentological and paleontological characteristics of Paleocene–Eocene deposits (between 63 and 47 million years old) in northeast Greenland, and investigate key unconformities and volcanic facies observed through seismic reflection imaging in offshore basins. We identify Paleocene–Eocene uplift that culminated in widespread regression, volcanism, and subaerial exposure during the Ypresian. We reconstruct the paleogeography of the northeast Atlantic–Arctic region and propose that this uplift led to fragmentation of the Norwegian–Greenland seaway during this period. We suggest that the seaway became severely restricted between about 56 and 53 million years ago, effectively isolating the Arctic from the Atlantic ocean during the Paleocene–Eocene thermal maximum and the early Eocene.


2021 ◽  
pp. 1-56
Author(s):  
Katherine A. Drummond ◽  
Matthew J. Pranter ◽  
Michael G. Grammer

Mississippian carbonate and silica-rich reservoirs of northern and central Oklahoma formed along a regionally extensive carbonate ramp to basin transect. The stratigraphy, lithology, and porosity characteristics of the Mississippian Meramec and Osage series vary significantly as older ramp carbonates prograde southward and transition into younger calcareous and quartz-rich silt deposits of the Anadarko Basin. Lithofacies identified within the northern carbonate-dominated portion of the system commonly include altered chert, skeletal grainstones, peloidal packstones-grainstones, bioturbated wackestones-packstones, bioturbated mudstones-wackestones, glauconitic sandstones, and siliceous shale. Lithofacies within the southern siliciclastic-dominated portion of the system include structureless to bioturbated sandstones, siltstones, and laminated mudstones, each with varying degrees of carbonate content. We group these core-based lithofacies into dominant lithologies/rock types which tie to well-log properties. Electrofacies classification methods including Artificial-Neural Network (ANN) and k-means clustering predict lithologies in non-cored wells. ANNs yielded the highest overall prediction accuracy of 85% for lithologies. Core, well log, and lithology log data establish the regional stratigraphic framework. In this study, the Mississippian interval of interest subdivides into sixteen stratigraphic zones. A depositional-dip oriented cross section and associated reservoir models illustrate both proximal to distal and stratigraphic variability of lithology and porosity. Lithology trends moving from north to south, from older to younger strata, reveal a carbonate-dominated succession capped by diagenetically altered chert northward shifting into a siliciclastic-dominated interval, which increases in clay content southward. Northward, prospective conventional reservoirs developed near cycle tops within diagenetically replaced cherts and cherty limestones associated with subaerial exposure and sea-level fluctuations. Southward, higher total porosity associates with increased clay content linked to the suppression of calcite cement, forming prospective unconventional targets near the bases of depositional cycles.


2021 ◽  
Vol 54 (1E) ◽  
pp. 29-42
Author(s):  
Ayad Edilbi ◽  
Stephen Bowden ◽  
Abdala Y Mohamed ◽  
Govand H Sherwani

The studied section is located in the core of the Gara Anticline, about 12 km southeast of Amedi Town. The Baluti Formation is generally composed of grey and green shale, calcareous, dolostone with intercalations of thinly bedded dolostones, dolomitic limestones, and silicified limestones which are occasionally brecciated. The petrographic study shows five main microfacies in the Baluti Formation namely; finely laminated dolomudstone, fossil-barren and lime mudstone, fenestral mudstone/packstone, peloids and ooids wackestone, and lithoclasts (intraclasts) grainstones. The mudstones facies with no fauna and radial-fibrous ooids can point to a protected and low energy environment. Moreover, fenestral structures are reliable criteria for identifying a tidal flat environment. The presence of the lithoclasts (intraclasts) with radial ooids and a few terrestrial fragments may represent a quiet environment, albeit one affected by infrequent storm deposits. As a supplementary to microfacies, the biomarker characterizations were used to deduce the depositional environment of the Baluti Formation. Biomarker parameters show that the Baluti Formation could be deposited in anoxic to suboxic environment, and organic matter input is more likely characterized by land plant organic matter. This study showed that the most likely paleoenvironments for the Baluti Formation were supratidal, intertidal, subtidal, and sand shoals setting. However, the lack and/or very low diversity of skeletal fauna, and the lack of subaerial exposure may indicate that some parts of the formation seem to be deposited in low energy and restricted environment (Lagoon).


2021 ◽  
Author(s):  
Pavel Kabanov

&lt;p&gt;Knowledge on the early development of vegetated landscapes mostly arrives from the floodplain successions where both paleosols and plant body fossils can be assessed. Due to better preservation in the sedimentary record, the shallow-marine carbonates avail much broader areas of former land surface preserved at disconformities, although the associated fossil floras are usually not preserved there. This study demonstrates how much can be learned from this underused sedimentary archive. Many dozens of subaerial exposure surfaces are assessed in cores from cyclic peritidal carbonates of the Emsian &amp;#8211; early Eifelian age. These surfaces range from incipient erosional surfaces with few solution features, through paleokarst profiles penetrating to &amp;#8805;1.0 m underneath disconformities, to thick (&gt;1m) calcretic-clayey paleosols where the parent limestone is ultimately disintegrated into floatbreccia. The studied succession also contains numerous palustrine carbonate intervals, which is the earliest known occurrence of a typical palustrine facies in coastal carbonate plain environment (calcimagnesian paleo-landscape) and is nearly coeval with the earliest occurrence of palustrine facies in the floodplain succession of Svalbard. None of paleokarst and paleosol profiles contain traces of vascular-plant root penetration, and only palustrine facies exhibit swarms of thin (0.5-1.5 mm in diameter) rhizoliths. These findings are within the context of Devonian paleosols on marine carbonate substrates where root traces and laminar calcretes are extremely rare, and no instances of root penetrations are trackable from pre-Givetian, as well as from the Famennian carbonate strata. Despite &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C and &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O signatures demonstrating partial diagenetic reset of isotopic composition in studied formations, the moderate &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C&lt;sub&gt;vpdb&lt;/sub&gt; offset towards lighter values is detected in two thicker paleosols (-3.0 to -8.0&amp;#8240; in calcretic matrix vs. -1.0 to -4.5&amp;#8240; in parent limestone). However, instances of &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C offset in pre-Late Devonian calcretes are rare and their attribution to plant-derived CO&lt;sub&gt;2&lt;/sub&gt; is doubtful. It is inferred that the land surface in calcimagnesian landscapes remained a primary desert long after the advent of vascular plants in more favorable wetland settings. Furthermore, for the entirety of Devonian and well into the Carboniferous time, the area involved in primary deserts (surfaces never colonized by embryophytes) must have been much broader than the vegetated conduits of continental runoff, as seed reproductive strategy emerged only in the mid-Famennian, and no plant adaptations to aridic habitats enter the fossil record until Pennsylvanian. The embryophytic green cover of even older, pre-Devonian land was confined to very specific amphibian loci. The negligible biomass this pioneer, ground-level green skin was likely able to achieve contests the hypothetical link between the emergence of thallophyte-grade vegetation and the Late Ordovician event of atmospheric oxygenation and decarbonization. The very gradual, on the scale of first hundred(s) Myr, evolutionary expansion of land plants and correspondently slow increase in their aerial coverage and biomass, is at odds with the hypothetical teleconnection between the spread of terrestrial vegetation, Devonian anoxic events, and biotic crises in the marine realm. Eruption activity in LIP(s) was likely a main driving force in the mid-Devonian switch to the widespread anoxic deposition in shelfal seas known as the Ka&amp;#269;&amp;#225;k Event.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document