New processes for the synthesis of biologically relevant heterocycles

2008 ◽  
Vol 80 (4) ◽  
pp. 669-679 ◽  
Author(s):  
Martin G. Banwell

This article describes the utility of certain readily accessible, ring-fused gem-dihalogenocyclopropanes as building blocks for the synthesis of heterocyclic and biologically active compounds.

Synlett ◽  
2020 ◽  
Author(s):  
Erica Benedetti ◽  
Laurent Micouin ◽  
Claire Fleurisson

AbstractCyclic cis-1,3-diamines are versatile building blocks frequently found in natural molecules or biologically active compounds. In comparison with widely studied 1,2-diamines, and despite their chemical similarity, 1,3-diamines have been investigated less intensively probably because of a lack of general synthetic procedures giving access to these compounds with good levels of chemo-, regio-, and stereocontrol. In this Account we will give a general overview of the biological interest of cyclic cis-1,3-diamines. We will then describe the synthesis and potential applications of these compounds with a particular focus on the work realized in our laboratory.1 Introduction2 Biological Relevance of the cis-1,3-Diamine Motif3 Classical Synthetic Strategies towards cis-1,3-Diamines4 N–N Bond Cleavage of Bicyclic Hydrazines: A Versatile Method to Access cis-1,3-Diamines4.1 Preparation of Five-Membered Cyclic cis-1,3-Diamino Alcohols4.2 Access to Fluorinated 1,3-cis-Diaminocyclopentanes4.3 Synthesis of cis-1,3-Diaminocyclohexitols4.4 Formation of Cyclic cis-3,5-Diaminopiperidines5 Applications of Cyclic cis-1,3-Diamines5.1 Small-Molecular RNA Binders5.2 Fluorinated 1,3-Diamino Cyclopentanes as NMR Probes6 Concluding Remarks


Author(s):  
Zhixiong Ruan ◽  
Shengsheng Lin ◽  
Xiaomei Cheng ◽  
Hasimujiang Balati ◽  
Zhongnan Xu ◽  
...  

The selenium-substituted heteroarenes are biologically active compounds and useful building blocks. In this sequence, we have developed a metal-and oxidant-free, environmentally friendly protocol for the regioselective selenylation of 2H-indazole derivatives...


2021 ◽  
Vol 18 ◽  
Author(s):  
Christian Schäfer ◽  
Hyejin Cho ◽  
Bernadett Vlocskó ◽  
Guoshu Xie ◽  
Béla Török

: Recent advances in the environmentally benign synthesis of common heterocycles are described. This account features three main parts; the preparation of non-aromatic heterocycles, one-ring aromatic heterocycles and their condensed analogs. Due to the great variety of and high interest in these compounds, this work focuses on providing representative examples of the preparation of the target compounds.


2000 ◽  
Vol 28 (2) ◽  
pp. 77-81 ◽  
Author(s):  
Y. M. Yevdokimov

Three different approaches to constructing bio-sensing units based on double-stranded (ds) DNA molecules, capable of detecting various biologically active compounds, are considered. The first approach is based on the abnormal optical activity of the liquid-crystalline dispersion formed from ds DNA molecules, modified by relevant physical factors or treated with biologically active compounds. The second one is based on the abnormal optical activity of the liquid-crystalline dispersions formed first from the ds DNA and then treated with coloured biologically active compounds. The third one is based on the abnormal optical activity, specific to particles of the liquid-crystalline dispersions, where the neighbouring DNA molecules are crosslinked by artifical polymeric bridges. These approaches permit the detection of biologically relevant compounds of various origins.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1772
Author(s):  
Ignacio E. Tobal ◽  
Rocío Bautista ◽  
David Diez ◽  
Narciso M. Garrido ◽  
Pilar García-García

In synthetic organic chemistry, there are very useful basic compounds known as building blocks. One of the main reactions wherein they are applied for the synthesis of complex molecules is the Diels–Alder cycloaddition. This reaction is between a diene and a dienophile. Among the most important dienes are the cyclic dienes, as they facilitate the reaction. This review considers the synthesis and reactivity of one of these dienes with special characteristics—it is cyclic and has an electron withdrawing group. This building block has been used for the synthesis of biologically active compounds and is present in natural compounds with interesting properties.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Sheng-Cai Zheng ◽  
San Wu ◽  
Qinghai Zhou ◽  
Lung Wa Chung ◽  
Liu Ye ◽  
...  

Abstract Axially chiral compounds are widespread in biologically active compounds and are useful chiral ligands or organocatalysts in asymmetric catalysis. It is well-known that styrenes are one of the most abundant and principal feedstocks and thus represent excellent prospective building blocks for chemical synthesis. Driven by the development of atroposelective synthesis of axially chiral styrene derivatives, we discovered herein the asymmetric organocatalytic approach via direct Michael addition reaction of substituted diones/ketone esters/malononitrile to alkynals. The axially chiral styrene compounds were produced with good chemical yields, enantioselectivities and almost complete E/Z-selectivities through a secondary amine-catalysed iminium activation strategy under mild conditions. Such structural motifs are important precursors for further transformations into biologically active compounds and synthetic useful intermediates and may have potential applications in asymmetric synthesis as olefin ligands or organocatalysts.


Tetrahedron ◽  
2016 ◽  
Vol 72 (47) ◽  
pp. 7462-7469 ◽  
Author(s):  
Katarzyna Grychowska ◽  
Bartłomiej Kubica ◽  
Marcin Drop ◽  
Evelina Colacino ◽  
Xavier Bantreil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document