Light scattering device for sizing and velocimetry of large droplets utilizing a ring-shaped laser beam

1982 ◽  
Vol 21 (13) ◽  
pp. 2456 ◽  
Author(s):  
Werner J. Glantschnig ◽  
Michael W. Golay ◽  
Sow-Hsin Chen ◽  
Fred R. Best
Keyword(s):  
1996 ◽  
Vol 150 ◽  
pp. 409-413
Author(s):  
Patrick P. Combet ◽  
Philippe L. Lamy

AbstractWe have set up an experimental device to optically study the scattering properties of dust particles. Measurements over the 8 — 174° interval of scattering angles are performed on a continuously flowing dust loaded jet illuminated by a polarized red HeNe laser beam. The scattering is averaged over the population of the dust particles in the jet, which can be determined independently, and give the “volume scattering function” for the two directions of polarization directly. While results for spherical particles are in good agreement with Mie theory, those for arbitrary particles show conspicuous deviations.


2004 ◽  
Vol 03 (06) ◽  
pp. 815-818 ◽  
Author(s):  
S. V. IVANOVA

Thermal changes of light scattering images in the far-field were observed under steady illumination by an incident laser beam of finite beam width on barium sodium niobate crystals in the temperature range of 20–500°C. Different patterns of light scattering in far-field were observed — from striped to round-like form with dependence on temperature, conditions of grown, direction of beam and polarization. The round-like form was observed on cooling from 450°C to 240°C. Striped forms of light scattering were observed below 200°C. Correlation of the behavior of elastic light scattering was observed in this temperature range.


2019 ◽  
Vol 6 (5) ◽  
pp. 190293 ◽  
Author(s):  
Yumeki Tani ◽  
Takashi Kaneta

Here we found that gold nanoparticles (AuNPs) enhance the optical force acting on vesicles prepared from phospholipids via hydrophobic and electrostatic interactions. A laser beam was introduced into a cuvette filled with a suspension of vesicles and it accelerated them in its propagation direction via a scattering force. The addition of the AuNPs exponentially increased the velocity of the vesicles as their concentration increased, but polystyrene particles had no significant impact on velocity in the presence of AuNPs. To elucidate the mechanism of the increased velocity, the surface charges in the vesicles and the AuNPs were controlled; the surface charges of the vesicles were varied via the use of anionic, cationic and neutral phospholipids, whereas AuNPs with positive and negative charges were synthesized by coating with citrate ion and 4-dimethylaminopyridine, respectively. All vesicles increased the velocity at different degrees depending on the surface charge. The vesicles were accelerated more efficiently when their charges were opposite those of the AuNPs. These results suggested that hydrophobic and electrostatic interactions between the vesicles and the AuNPs enhanced the optical force. By accounting for the binding constant between the vesicles and the AuNPs, we proposed a model for the relationship between the concentration of the AuNPs and the velocity of the vesicles. Consequently, the increased velocity of the vesicles was attributed to the light scattering that was enhanced when AuNPs were adsorbed onto the vesicles.


2010 ◽  
Vol 666 ◽  
pp. 273-307 ◽  
Author(s):  
R. WUNENBURGER ◽  
B. ISSENMANN ◽  
E. BRASSELET ◽  
C. LOUSSERT ◽  
V. HOURTANE ◽  
...  

We report on the direct experimental observation of laser-induced flows in isotropic liquids that scatter light. We use a droplet microemulsion in the two-phase regime, which behaves like a binary mixture. Close to its critical consolute line, the microemulsion undergoes large refractive index fluctuations that scatter light. The radiation pressure of a laser beam is focused onto the soft interface between the two phases of the microemulsion and induces a cylindrical liquid jet that continuously emits droplets. We demonstrate that this dripping phenomenon takes place as a consequence of a steady flow induced by the transfer of linear momentum from the optical field to the liquid due to light scattering. We first show that the cylindrical jet guides light as a step-index liquid optical fiber whose core diameter is self-adapted to the light itself. Then, by modelling the light-induced flow as a low-Reynolds-number, parallel flow, we predict the dependence of the dripping flow rate on the thermophysical properties of the microemulsion and the laser beam power. Satisfying agreement is found between the model and experiments.


1976 ◽  
Vol 24 (1) ◽  
pp. 308-314 ◽  
Author(s):  
G C Salzman ◽  
J M Crowell ◽  
K M Hansen ◽  
M Ingram ◽  
P F Mullaney

A flow-system instrument is described in which the laser light scattered by a mammalian cell is sampled simultaneously at up to 32 angles between 0 degrees and 21 degrees from the laser beam axis as the cell passes through the beam. The scatter pattern for each cell is stored by a computer for later analysis. Various data-processing techniques are discussed. Results of preliminary application of the instrument to the analysis of normal and abnormal gynecologic specimens are presented.


Sign in / Sign up

Export Citation Format

Share Document