Disability glare: effects of temporal characteristics of the glare source and of the visual-field location of the test stimulus

1995 ◽  
Vol 12 (10) ◽  
pp. 2252 ◽  
Author(s):  
Isabel Cristina Bichão ◽  
Dean Yager ◽  
Jeanette Meng
Author(s):  
Cheng Xiaoqin ◽  
Kliegl Katrin ◽  
Huckauf Anke ◽  
Penney Trevor

2009 ◽  
Vol 9 (6) ◽  
pp. 24-24
Author(s):  
P. A. McMullen ◽  
L. E. MacSween ◽  
C. A. Collin

Vision ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 51
Author(s):  
Jody Stanley ◽  
Jason D. Forte ◽  
Olivia Carter

When dissimilar images are presented to each eye, the images will alternate every few seconds in a phenomenon known as binocular rivalry. Recent research has found evidence of a bias towards one image at the initial ‘onset’ period of rivalry that varies across the peripheral visual field. To determine the role that visual field location plays in and around the fovea at onset, trained observers were presented small orthogonal achromatic grating patches at various locations across the central 3° of visual space for 1-s and 60-s intervals. Results reveal stronger bias at onset than during continuous rivalry, and evidence of temporal hemifield dominance across observers, however, the nature of the hemifield effects differed between individuals and interacted with overall eye dominance. Despite using small grating patches, a high proportion of mixed percept was still reported, with more mixed percept at onset along the vertical midline, in general, and in increasing proportions with eccentricity in the lateral hemifields. Results show that even within the foveal range, onset rivalry bias varies across visual space, and differs in degree and sensitivity to biases in average dominance over continuous viewing.


2021 ◽  
Author(s):  
Hua-Chun Sun ◽  
Damien John Mannion

Gloss is an aspect of surface perception that is important for understanding the material properties of the environment. Because a surface can stimulate any region of the visual field during natural viewing, it is of interest to measure the potential influence of visual field asymmetries on perceived gloss—as such asymmetries could make the perception of gloss dependent on the visual field location. Here, our aim was to compare the apparent glossiness of renderings of nondescript objects when positioned in the lower and upper regions of the visual field. In Experiment 1, participants (n=20) evaluated the glossiness of objects presented simultaneously below and above central fixation. Estimates of the specular reflectance required for perceptual gloss equality indicated little effect of the visual field location. In Experiment 2, participants (n=19) compared the magnitude of gloss differences across two pairs of objects in either the lower or the upper visual field. Estimates of the exponent relating specular reflectance to a gloss difference scale and a noise parameter again indicated little effect of the visual field location. Overall, these estimates are consistent with the existence of a high degree of gloss constancy across presentations in the lower and upper visual fields.


2021 ◽  
Vol 224 (6) ◽  
pp. jeb230433
Author(s):  
Azadeh Tafreshiha ◽  
Sven A. van der Burg ◽  
Kato Smits ◽  
Laila A. Blömer ◽  
J. Alexander Heimel

ABSTRACTInnate defensive responses such as freezing or escape are essential for animal survival. Mice show defensive behaviour to stimuli sweeping overhead, like a bird cruising the sky. Here, we tested this in young male mice and found that mice reduced their defensive freezing after sessions with a stimulus passing overhead repeatedly. This habituation is stimulus specific, as mice freeze again to a novel shape. Habituation occurs regardless of the visual field location of the repeated stimulus. The mice generalized over a range of sizes and shapes, but distinguished objects when they differed in both size and shape. Innate visual defensive responses are thus strongly influenced by previous experience as mice learn to ignore specific stimuli.


2020 ◽  
Author(s):  
Wendel M. Friedl ◽  
Andreas Keil

AbstractProcessing capabilities for many low-level visual features are experientially malleable, aiding sighted organisms in adapting to dynamic environments. Explicit instructions to attend a specific visual field location influence retinotopic visuocortical activity, amplifying responses to stimuli appearing at cued spatial positions. It remains undetermined, however, both how such prioritization affects surrounding non-prioritized locations, and if a given retinotopic spatial position can attain enhanced cortical representation through experience rather than instruction. This work examined visuocortical response changes as human observers learned, through differential classical conditioning, to associate specific on-screen locations with aversive outcomes. Using dense-array EEG and pupillometry, we tested the pre-registered hypotheses of either sharpening or generalization around an aversively associated location following a single conditioning session. Specifically, competing hypotheses tested if mean response changes would take the form of a gaussian (generalization) or difference-of-gaussian (sharpening) distribution over spatial positions, peaking at the viewing location paired with a noxious noise. Occipital 15 Hz steady-state visual evoked potential (ssVEP) responses were selectively heightened when viewing aversively paired locations and displayed a non-linear, difference-of-gaussian profile across neighboring locations, consistent with suppressive surround modulation of non-prioritized positions. Measures of alpha band (8 – 12.8 Hz) activity and pupil diameter also exhibited selectively heightened responses to noise-paired locations but did not evince any difference across the non-paired locations. These results indicate that visuocortical spatial representations are sharpened in response to location-specific aversive conditioning, while top-down influences indexed by alpha power reduction exhibit all-or-none modulation.Significance StatementIt is increasingly recognized that early visual cortex is not a static processor of physical features, but is instead constantly shaped by perceptual experience. It remains unclear, however, to what extent the cortical representation of many fundamental features, including visual field location, is malleable by experience. Using EEG and an aversive classical conditioning paradigm, we observed sharpening of visuocortical responses to stimuli appearing at aversively associated locations along with location-selective facilitation of response systems indexed by pupil diameter and EEG alpha power. These findings highlight the experience-dependent flexibility of retinotopic spatial representations in visual cortex, opening avenues towards novel treatment targets in disorders of attention and spatial cognition.


Sign in / Sign up

Export Citation Format

Share Document