Channel capacity of orbital-angular-momentum-based wireless communication systems with partially coherent elegant Laguerre–Gaussian beams in oceanic turbulence

2019 ◽  
Vol 36 (4) ◽  
pp. 471 ◽  
Author(s):  
Yongxu Li ◽  
Zhiwei Cui ◽  
Yiping Han ◽  
Yuanfei Hui
Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1864
Author(s):  
Li Chen ◽  
Lin Zhao ◽  
Yuan Hao ◽  
Wenyi Liu ◽  
Yi Wu ◽  
...  

The metasurface spiral focusing (MSF) generator has gained attention in high-speed optical communications due to its spatial orthogonality. However, previous MSF generators only can generate a single orbital angular momentum (OAM) mode for one polarized light. Here, a MSF generator with tunable OAM is proposed and it has the ability to transform linearly polarized light (LPL), circularly polarized light or Gaussian beams into vortex beams which can carry tunable OAM at near-infrared wavelength by controlling the phase transition of vanadium dioxide (VO2). Utilizing this MSF generator, the beams can be focused on several wavelength-sized rings with efficiency as high as 76%, 32% when VO2 are in the insulating phase and in the metallic phase, respectively. Moreover, we reveal the relationship between the reflective focal length and transmissive focal length, and the latter is 2.3 times of the former. We further demonstrate the impact of Gaussian beams with different waist sizes on MSF generators: the increase in waist size produces the enhancement in spiral focusing efficiency and the decrease in size of focal ring. The MSF generator we proposed will be applicable to a variety of integrated compact optical systems, such as optical communication systems and optical trapping systems.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1567
Author(s):  
Sang-Hoon Lee ◽  
Ahmed Al Al Amin ◽  
Soo-Young Shin

Spectral efficiency is a major concern for future 6G wireless communication systems. Thus, an appropriate scheme is needed to provide channel capacity improvement for multiple transmitters and receiver-based wireless communication systems without consuming extra resource for communication (e.g., frequency/time/code) or causing interference. Therefore, to fulfill the mentioned requirements for the future 6G wireless network, orbital angular momentum-based multiple-input-multiple-output (OAM-MIMO) multiplexing technique is incorporated with the receive antenna shift keying (RASK) technique in this study (termed as the OAM-MIMO-RASK scheme). OAM-MIMO-RASK can transfer multiple symbols from multiple transmitters to different receivers simultaneously by using multiple subchannels using the OAM and RASK techniques without any interference or additional resource (frequency/time/code). The numerical results illustrated that the proposed OAM-MIMO-RASK can achieve almost double capacity than the existing OAM-MIMO scheme and significantly higher capacity than the existing RASK-based scheme for different values of signal-to-noise ratio. Moreover, the simulation result is validated by the theoretical result which is also shown by the numerical result. In addition, due to different normalized distances from the transmitters and receivers, the proposed OAM-MIMO-RASK scheme can achieve almost double capacity than the existing OAM-MIMO scheme by using OAM-MIMO and RASK technique effectively which is also depicted by the numerical results.


2021 ◽  
Author(s):  
Ruben Boluda-Ruiz ◽  
Pedro Salcedo Serrano ◽  
Beatriz Castillo-Vazquez ◽  
Antonio Garcia-Zambrana ◽  
Jose Maria Garrido-Balsells

Sign in / Sign up

Export Citation Format

Share Document