non line of sight
Recently Published Documents


TOTAL DOCUMENTS

824
(FIVE YEARS 284)

H-INDEX

39
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Jamal AMADID ◽  
Abdelfettah Belhabib ◽  
Mohamed Boulouird ◽  
Moha M’Rabet Hassan ◽  
Abdelouhab Zeroual

Abstract Some more practical channels that model the networks in a real environment is the multi-path communication channels. In order to investigate these communications channels. This work addressed Channel Estimation (CE) in the Uplink (UL) phase for a multi-cell multi-user massive multipleinput multiple-output (M-MIMO) system that studies multi-path communication between each user and its serving Base Station (BS). We suppose that the network operates under Time-Division Duplex (TDD) protocol. We studied and analyzed the multi-path channels and their benefit over CE since it presents a more realistic channel that displays a real propagation circumstance. on the flip side, we evaluated the CE quality using ideal MinimumMean Square Error (MMSE). This latter relies on an impractical property that can be explicated since the MMSE estimator considers foreknowledge on Large-Scale Fading (LSF) coefficients of interfering users. Thus, the suggested estimator is introduced to overcome this issue, where the suggested estimator tackled this problem and presented result asymptotic approaches to the performance of the MMSE estimator. Besides, we considered a more real communication in which the multi-path channels are either realized using Non-Line-of-Sight (NLoS) only or using both Line-of-Sight (LoS) and NLoS path depending on the distance at which the user is located from his serving BS. Otherwise, in numerous scenarios, users at the cell edge are strongly affected by Pilot Contamination (PC). Hence, we introduced a Power Control (PoC) policy so that the users at the cell edge are less affected by the PC problem. In the simulation results segment, the analytic and simulated results are introduced to assert our theoretical study.


Author(s):  
Vasin Chaoboworn ◽  
Yoschanin Sasiwat ◽  
Dujdow Buranapanichkit ◽  
Hiroshi Saito ◽  
Apidet Booranawong

In this paper, the communication reliability of a 2.4 GHz multi-hop wireless sensor network (WSN) in various test scenarios is evaluated through experiments. First, we implement an autonomous communication procedure for a multi-hop WSN on Tmote sky sensor nodes; 2.4 GHz, an IEEE 802.15.4 standard. Here, all nodes including a transmitter node (Tx), forwarder nodes (Fw), and a base station node (BS) can automatically work for transmitting and receiving data. The experiments have been tested in different scenarios including: i) in a room, ii) line-of-sight (LoS) communications on the 2nd floor of a building, iii) LoS and non-line-of-sight (NLoS) communications on the 1st floor to the 2nd floor, iv) LoS and NLoS communications from outdoor to the 1st and the 2nd floors of the building. The experimental results demonstrate that the communication reliability indicated by the packet delivery ratio (PDR) can vary from 99.89% in the case of i) to 14.40% in the case of iv), respectively. Here, the experiments reveal that multi-hop wireless commutations for outdoor to indoor with different floors and NLoS largely affect the PDR results, where the PDR more decreases from the best case (i.e., the case of a)) by 85.49%. Our research methodology and findings can be useful for users and researchers to carefully consider and deploy an efficient 2.4 GHz multi-hop WSN in their works, since different WSN applications require different communication reliability level.


Author(s):  
Nina Siti Aminah ◽  
Muhamamad Reza Ramadhani Raharjo ◽  
Maman Budiman

Technology makes it easier for us to communicate over a distance. However, there are still many remote areas that find it difficult to communicate. This is due to the fact that communication infrastructure in some areas is expensive to build while the profit will be low. This paper proposes to combine voice over internet protocol (VoIP) over mesh network implemented on openWRT router. The routers are performing mesh functions. We set up a VoIP server on a router and enabled session initiation protocol (SIP) clients on other routers. Therefore, we only need routers as a means of communication. The experiment showed very good results, in the line-of-sight (LOS) condition, they are limited to reception distances up to 145 meters while in the non-line-of-sight (NLOS) condition, they are limited to reception distances up to 55 meters.


2021 ◽  
Author(s):  
Chun-yan Li ◽  
Dou Luo ◽  
Geng-peng Li ◽  
Lin Qiao ◽  
Qi Tang

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Florian Willomitzer ◽  
Prasanna V. Rangarajan ◽  
Fengqiang Li ◽  
Muralidhar M. Balaji ◽  
Marc P. Christensen ◽  
...  

AbstractThe presence of a scattering medium in the imaging path between an object and an observer is known to severely limit the visual acuity of the imaging system. We present an approach to circumvent the deleterious effects of scattering, by exploiting spectral correlations in scattered wavefronts. Our Synthetic Wavelength Holography (SWH) method is able to recover a holographic representation of hidden targets with sub-mm resolution over a nearly hemispheric angular field of view. The complete object field is recorded within 46 ms, by monitoring the scattered light return in a probe area smaller than 6 cm × 6 cm. This unique combination of attributes opens up a plethora of new Non-Line-of-Sight imaging applications ranging from medical imaging and forensics, to early-warning navigation systems and reconnaissance. Adapting the findings of this work to other wave phenomena will help unlock a wider gamut of applications beyond those envisioned in this paper.


2021 ◽  
Vol 18 (23) ◽  
pp. 685
Author(s):  
Muhammad Hassan Fares ◽  
Hadi Moradi ◽  
Mahmoud Shahabadi ◽  
Yasser Mohanna

Due to its low implementation cost, the combination of the Received Signal Strength (RSS) with the Angle of Arrival (AOA) measurements is one of the solutions for Radio Frequency (RF) source localization, especially in a Non-Line of Sight (NLOS) environment. It is critical to determine the search space for a person who is lost in rural areas where the mobile network is unavailable due to a lack of Base Tower Stations (BTS) in order to reduce search time. In this paper, we introduce a new beacon-based approach for RF source localization, where the RF signal is received in NLOS after 1-bounce reflection, by combining the information coming from both the RSS-AOA sensors and the beacons, which are used as helpers- that move along a determined path. The proposed approach relies on determining the reflector’s pose first, after which the RF source is localized. The work has been verified in simulation and the Root Mean Square Error (RMSE) is used as a performance metric for RF source localization. Results show that our proposed approach has the lowest RMSE among localization methods mentioned in the literature under the same conditions. HIGHLIGHTS A new beacon-based approach for RF source localization in Non-Line Of Sight (NLOS) condition A reflector’s pose is determined based on the signal received from beacons The reflector’s pose is used to determine the location of the RF source One bounce reflection is considered since the chance of receiving RF signal with more reflections is very low GRAPHICAL ABSTRACT


Sign in / Sign up

Export Citation Format

Share Document