Resonant nonlinear refractive index measurement of optical fiber based on mode coupling using cascaded fiber tapers

Author(s):  
Seung Ho Lee ◽  
Bok Hyeon Kim ◽  
Dong Hoon Son ◽  
Won-Taek Han
Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 199
Author(s):  
Yu-Cheng Lin ◽  
Liang-Yü Chen

The generation of lossy mode resonances (LMR) with a metallic oxide film deposited on an optical fiber has attracted the attention of many applications. However, an LMR-based optical fiber sensor is frangible, and therefore it does not allow control of the temperature and is not suited to mass production. This paper aims to develop a temperature-controlled lossy mode resonance (TC-LMR) sensor on an optical planar waveguide with an active temperature control function in which an ITO film is not only used as the LMR resonance but also to provide the heating function to achieve the benefits of compact size and active temperature control. A simple flat model about the heat transfer mechanism is proposed to determine the heating time constant for the applied voltages. The TC-LMR sensor is evaluated experimentally for refractive index measurement using a glycerol solution. The heating temperature functions relative to the controlled voltages for water and glycerol are obtained to verify the performance of the TC-LMR sensor. The TC-LMR sensor is a valuable sensing device that can be used in clinical testing and point of care for programming heating with precise temperature control.


1992 ◽  
Vol 4 (11) ◽  
pp. 1282-1284 ◽  
Author(s):  
E. Jaunart ◽  
P. Megret ◽  
J.C. Froidure ◽  
P. Crahay ◽  
M. Blondel ◽  
...  

2011 ◽  
Vol 20 (02) ◽  
pp. 183-191 ◽  
Author(s):  
FRYAD Z. HENARI ◽  
ABDULLAH M. ASIRI

We report results from investigations of the nonlinear refractive index and nonlinear absorption coefficient of (2E)-3-[4-(Dimethylamino)phenyl]-1-(2,5-dimethylthiophen-3-yl)prop-2-en-1-one and (2E)-3-(3,4-Dimethoxyphenyl)-1-(2,5-dimethylthiophen-3-yl) prop-2-en-1-one using Z-scan technique with a continuous wave (cw) laser at wavelengths 488 nm and 514 nm. The nonlinear refractive index and nonlinear absorption coefficient of both samples were evaluated. The origin of the nonlinear effects was discussed. Optical limiting based on light induced nonlinear refractive index variation is demonstrated. The limiting thresholds were estimated for both samples. The results suggested that these materials offer promise as candidates for optical limiting and optical devices in the low power regime.


Sign in / Sign up

Export Citation Format

Share Document