Compact laser source for high-power white-light and widely tunable sub 65 fs laser pulses

2010 ◽  
Vol 35 (23) ◽  
pp. 3961 ◽  
Author(s):  
Bernd Metzger ◽  
Andy Steinmann ◽  
Felix Hoos ◽  
Sebastian Pricking ◽  
Harald Giessen
2014 ◽  
Vol 26 (12) ◽  
pp. 120101
Author(s):  
孙畅 Sun Chang ◽  
葛廷武 Ge Tingwu ◽  
李思源 Li Siyuan ◽  
张晶 Zhang Jing ◽  
王智勇 Wang Zhiyong

2006 ◽  
Author(s):  
E.-Bernhard Kley ◽  
Tobias Erdmann ◽  
Peter Triebel ◽  
Hans-Joerg Fuchs ◽  
Birger Horstmann ◽  
...  

2005 ◽  
Vol 30 (1) ◽  
pp. 78 ◽  
Author(s):  
R. Th. Zinkstok ◽  
S. Witte ◽  
W. Hogervorst ◽  
K. S. E. Eikema

Author(s):  
Alessandro Longato ◽  
Sebastiano Picco ◽  
Lorenzo Moro ◽  
Matteo Buffolo ◽  
Carlo De Santi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Ruchkina ◽  
Dina Hot ◽  
Pengji Ding ◽  
Ali Hosseinnia ◽  
Per-Erik Bengtsson ◽  
...  

AbstractLaser-induced grating spectroscopy (LIGS) is for the first time explored in a configuration based on the crossing of two focused femtosecond (fs) laser pulses (800-nm wavelength) and a focused continuous-wave (cw) laser beam (532-nm wavelength). A thermal grating was formed by multi-photon absorption of the fs-laser pulses by $$\hbox {N}_{{2}}$$ N 2 with a pulse energy around 700 $$\upmu $$ μ J ($$\sim $$ ∼ 45 TW/$$\hbox {cm}^{2}$$ cm 2 ). The feasibility of this LIGS configuration was investigated for thermometry in heated nitrogen gas flows. The temperature was varied from room temperature up to 750 K, producing strong single-shot LIGS signals. A model based on the solution of the linearized hydrodynamic equations was used to extract temperature information from single-shot experimental data, and the results show excellent agreement with the thermocouple measurements. Furthermore, the fluorescence produced by the fs-laser pulses was investigated. This study indicates an 8-photon absorption pathway for $$\hbox {N}_{{2}}$$ N 2 in order to reach the $$\hbox {B}^{3}\Pi _{g}$$ B 3 Π g state from the ground state, and 8 + 5 photon excitation to reach the $$\hbox {B}^{2}\Sigma _{u}^{+}$$ B 2 Σ u + state of the $$\hbox {N}_{2}^{+}$$ N 2 + ion. At pulse energies higher than 1 mJ, the LIGS signal was disturbed due to the generation of plasma. Additionally, measurements in argon gas and air were performed, where the LIGS signal for argon shows lower intensity compared to air and $$\hbox {N}_{{2}}$$ N 2 .


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sicong Wang ◽  
Chen Wei ◽  
Yuanhua Feng ◽  
Hongkun Cao ◽  
Wenzhe Li ◽  
...  

AbstractAlthough photonics presents the fastest and most energy-efficient method of data transfer, magnetism still offers the cheapest and most natural way to store data. The ultrafast and energy-efficient optical control of magnetism is presently a missing technological link that prevents us from reaching the next evolution in information processing. The discovery of all-optical magnetization reversal in GdFeCo with the help of 100 fs laser pulses has further aroused intense interest in this compelling problem. Although the applicability of this approach to high-speed data processing depends vitally on the maximum repetition rate of the switching, the latter remains virtually unknown. Here we experimentally unveil the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, we reveal the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, we demonstrate an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.


Sign in / Sign up

Export Citation Format

Share Document