High-Throughput, High-Resolution Echelle Deep-UV Raman Spectrometer

2013 ◽  
Vol 67 (8) ◽  
pp. 873-883 ◽  
Author(s):  
Sergei V. Bykov ◽  
Bhavya Sharma ◽  
Sanford A. Asher
Author(s):  
Boleslaw L. Mellerowicz ◽  
Kris Zacny ◽  
Evan Eshelman ◽  
Rohit Bhartia ◽  
Madelyne Willis ◽  
...  

2004 ◽  
Vol 381 (2) ◽  
pp. 431-437 ◽  
Author(s):  
Igor K. Lednev ◽  
Vladimir V. Ermolenkov ◽  
Wei He ◽  
Ming Xu

Author(s):  
Frank Altmann ◽  
Jens Beyersdorfer ◽  
Jan Schischka ◽  
Michael Krause ◽  
German Franz ◽  
...  

Abstract In this paper the new Vion™ Plasma-FIB system, developed by FEI, is evaluated for cross sectioning of Cu filled Through Silicon Via (TSV) interconnects. The aim of the study presented in this paper is to evaluate and optimise different Plasma-FIB (P-FIB) milling strategies in terms of performance and cross section surface quality. The sufficient preservation of microstructures within cross sections is crucial for subsequent Electron Backscatter Diffraction (EBSD) grain structure analyses and a high resolution interface characterisation by TEM.


1996 ◽  
Author(s):  
Klony S. Lieberman ◽  
Hanan Terkel ◽  
Michael Rudman ◽  
A. Ignatov ◽  
Aaron Lewis

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 83
Author(s):  
Ritika Singh Petersen ◽  
Anja Boisen ◽  
Stephan Sylvest Keller

Microparticles are ubiquitous in applications ranging from electronics and drug delivery to cosmetics and food. Conventionally, non-spherical microparticles in various materials with specific shapes, sizes, and physicochemical properties have been fabricated using cleanroom-free lithography techniques such as soft lithography and its high-resolution version particle replication in non-wetting template (PRINT). These methods process the particle material in its liquid/semi-liquid state by deformable molds, limiting the materials from which the particles and the molds can be fabricated. In this study, the microparticle material is exploited as a sheet placed on a deformable substrate, punched by a robust mold. Drawing inspiration from the macro-manufacturing technique of punching metallic sheets, Micromechanical Punching (MMP) is a high-throughput technique for fabrication of non-spherical microparticles. MMP allows production of microparticles from prepatterned, porous, and fibrous films, constituting thermoplastics and thermosetting polymers. As an illustration of application of MMP in drug delivery, flat, microdisk-shaped Furosemide embedded poly(lactic-co-glycolic acid) microparticles are fabricated and Furosemide release is observed. Thus, it is shown in the paper that Micromechanical punching has potential to make micro/nanofabrication more accessible to the research and industrial communities active in applications that require engineered particles.


2011 ◽  
Vol 17 (S2) ◽  
pp. 966-967 ◽  
Author(s):  
R Schalek ◽  
N Kasthuri ◽  
K Hayworth ◽  
D Berger ◽  
J Tapia ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


2003 ◽  
Author(s):  
Steven N. Osterman ◽  
Nicholas M. Schneider ◽  
David A. Content ◽  
William E. McClintock ◽  
Stephen R. Steg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document