scholarly journals Interspike interval correlations in neuron models with adaptation and correlated noise

2021 ◽  
Vol 17 (8) ◽  
pp. e1009261
Author(s):  
Lukas Ramlow ◽  
Benjamin Lindner

The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel’s time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability.

1985 ◽  
Vol 22 (03) ◽  
pp. 668-677 ◽  
Author(s):  
Pyke Tin

This paper considers a single-server queueing system with Markov-dependent interarrival times, with special reference to the serial correlation coefficient of the arrival process. The queue size and waiting-time processes are investigated. Both transient and limiting results are given.


1992 ◽  
Vol 29 (2) ◽  
pp. 404-417
Author(s):  
D. A. Stanford ◽  
B. Pagurek

The generating functions for the serial covariances for number in system in the stationary GI/M/1 bulk arrival queue with fixed bulk sizes, and the GI/Em/1 queue, are derived. Expressions for the infinite sum of the serial correlation coefficients are also presented, as well as the first serial correlation coefficient in the case of the bulk arrival queue. Several numerical examples are considered.


1985 ◽  
Vol 22 (3) ◽  
pp. 668-677 ◽  
Author(s):  
Pyke Tin

This paper considers a single-server queueing system with Markov-dependent interarrival times, with special reference to the serial correlation coefficient of the arrival process. The queue size and waiting-time processes are investigated. Both transient and limiting results are given.


Sign in / Sign up

Export Citation Format

Share Document