scholarly journals Sugar feeding patterns of New York Aedes albopictus mosquitoes are affected by saturation deficit, flowers, and host seeking

2020 ◽  
Vol 14 (10) ◽  
pp. e0008244
Author(s):  
Kara Fikrig ◽  
Sonile Peck ◽  
Peter Deckerman ◽  
Sharon Dang ◽  
Kimberly St Fleur ◽  
...  

Background Sugar feeding is an important behavior which may determine vector potential of female mosquitoes. Sugar meals can reduce blood feeding frequency, enhance survival, and decrease fecundity, as well as provide energetic reserves to fuel energy intensive behaviors such as mating and host seeking. Sugar feeding behavior can be harnessed for vector control (e.g. attractive toxic sugar baits). Few studies have addressed sugar feeding of Aedes albopictus, a vector of arboviruses of public health importance, including dengue and Zika viruses. To address this knowledge gap, we assessed sugar feeding patterns of Ae. albopictus for the first time in its invasive northeastern USA range. Methodology/Principal findings Using the cold anthrone fructose assay with robust sample sizes, we demonstrated that a large percentage of both male (49.6%) and female (41.8%) Ae. albopictus fed on plant or homopteran derived sugar sources within 24 hrs prior to capture. Our results suggest that sugar feeding behavior increases when environmental conditions are dry (high saturation deficit) and may vary by behavioral status (host seeking vs. resting). Furthermore, mosquitoes collected on properties with flowers (>3 blooms) had higher fructose concentrations compared to those collected from properties with few to no flowers (0–3). Conclusions/Significance Our results provide the first evidence of Ae. albopictus sugar feeding behavior in the Northeastern US and reveal relatively high rates of sugar feeding. These results suggest the potential success for regional deployment of toxic sugar baits. In addition, we demonstrate the impact of several environmental and mosquito parameters (saturation deficit, presence of flowers, host seeking status, and sex) on sugar feeding. Placing sugar feeding behavior in the context of these environmental and mosquito parameters provides further insight into spatiotemporal dynamics of feeding behavior for Ae. albopictus, and in turn, provides information for evidence-based control decisions.

2020 ◽  
Author(s):  
Kara Fikrig ◽  
Sonile Peck ◽  
Peter Deckerman ◽  
Sharon Dang ◽  
Kimberly St Fleur ◽  
...  

AbstractBackgroundSugar feeding is an important behavior which may determine vector potential of mosquitoes. Sugar meals can reduce blood feeding frequency, enhance survival, and decrease fecundity, as well as provide energetic reserves to fuel energy intensive behaviors such as mating and host seeking. Sugar feeding behavior also can be harnessed for vector control (e.g. attractive toxic sugar baits). Few studies have addressed sugar feeding of Aedes albopictus, a vector of arboviruses of public health importance, including dengue and Zika viruses. To address this knowledge gap, we assessed sugar feeding patterns of Ae. albopictus for the first time in its invasive northeastern USA range.Methodology/ Principal FindingsUsing the cold anthrone fructose assay with robust sample sizes, we demonstrated that a large percentage of both male (49.6%) and female (41.8%) Ae. albopictus fed on plant or homopteran derived sugar sources within 24 hrs of capture. Our results suggest that sugar feeding behavior increases when environmental conditions are dry and may vary by behavioral status (host seeking vs. resting). Furthermore, mosquitoes collected on properties with flowers (>3 blooms) had higher fructose concentrations compared to those collected from properties with few to no flowers (0-3).Conclusions/SignificanceOur results provide the first evidence of Ae. albopictus sugar feeding behavior in the Northeastern US and reveal relatively high rates of sugar feeding. These results suggest the potential success for regional deployment of toxic sugar baits. In addition, we demonstrate the impact of several environmental and mosquito parameters (environmental dryness, presence of flowers, host seeking status, and sex) on sugar feeding. Placing sugar feeding behavior in the context of these environmental and mosquito parameters provides further insight into spatiotemporal dynamics of feeding behavior for Ae. albopictus, and in turn, provides information for evidence-based control decisions.


2021 ◽  
Author(s):  
Kara M Fikrig ◽  
Elisabeth Martin ◽  
Sharon Dang ◽  
Kimberly St Fleur ◽  
Henry Goldsmith ◽  
...  

Aedes albopictus is a competent vector of numerous pathogens, representing a range of transmission cycles involving unique hosts. Despite the important status of this vector, variation in its feeding patterns is poorly understood. We examined the feeding patterns of Ae. albopictus utilizing resting collections in Long Island, New York, and contextualized blood meal sources with host availability measured by household interviews and camera traps. We identified 90 blood meals, including 29 human, 22 cat, 16 horse, 12 opossum, 5 dog, 2 goat, and 1 rabbit, rat, squirrel and raccoon. Our study is the first to quantitatively assess Ae. albopictus feeding patterns in the context of host availability of wild animals in addition to humans and domestic animals. Host feeding indices showed that cats and dogs were fed upon disproportionately often compared to humans. Forage ratios suggested a tendency to feed on cats and opossums and to avoid raccoons, squirrels, and birds. This feeding pattern was different from another published study from Baltimore, where Ae. albopictus fed more often on rats than humans. To understand if these differences were due to host availability or mosquito population variation, we compared the fitness of Long Island and Baltimore Ae. albopictus after feeding on rat and human blood. In addition, we examined fitness within the Long Island population after feeding on human, rat, cat, horse, and opossum blood. Together, our results do not show major mosquito fitness differences by blood hosts, suggesting that fitness benefits do not drive Northeastern Ae. albopictus feeding patterns.


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 507
Author(s):  
Younes Laidoudi ◽  
Djamel Tahir ◽  
Hacène Medkour ◽  
Marie Varloud ◽  
Oleg Mediannikov ◽  
...  

Dinotefuran-Permethrin-Pyriproxyfen (DPP) is used to kill and repel mosquitoes from dogs. However, the influence of the product on the host-seeking behavior of mosquitoes remains unknown. The interference of DPP with the host selection of unfed female Aedes albopictus was investigated. A total of 18 animals (9 mice and 9 rats) were divided into three groups of six animals each. DU: DPP treated rats (n = 3) with untreated mice (n = 3), UD: DPP treated mice (n = 3) with untreated rats (n = 3) and control UU: untreated mice (n = 3) and untreated rats (n = 3). In each group, the rats and mice were placed 30 cm apart. After sedation, the animals in each group were exposed twice (Day 1 and Day 7 post-treatment) for one hour to 71 ± 3 female mosquitoes. Mosquitoes were categorized after the 2-h post-exposure period as dead or alive. Blood-meal origin was determined from mosquitoes using a newly customized duplex qPCR. The highest values of forage ratio (1.36 ≥ wi ≤ 1.88) and selection index (0.63 ≥ Bi ≤ 0.94) for rat hosts indicates a preference of mosquitoes for this species as compared to mice when co-housed during the exposure. The mosquitoes only seldom fed on mice, even in the untreated group. The anti-feeding effect of DPP was therefore only assessed on rat’s hosts. The results showed that DPP, when directly applied on rats, provided a direct protection of 82% and 61% on Day 1 and Day 7, respectively, while when applied on mice hosts (UD), the DPP provided an indirect protection of 21% and 10% on Day 1 and Day 7, respectively. The results showed also that DPP, when applied on rats, provided a direct protection against Ae. albopictus bites. This effect did not result in increased exposure of the untreated host placed in the same cage at a distance of 30 cm.


2012 ◽  
Vol 5 (1) ◽  
pp. 57 ◽  
Author(s):  
Basile Kamgang ◽  
Elysée Nchoutpouen ◽  
Frédéric Simard ◽  
Christophe Paupy

Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 347 ◽  
Author(s):  
Irvin Forde Upshur ◽  
Elizabeth Annadel Bose ◽  
Cameron Hart ◽  
Chloé Lahondère

Aedes aegypti is an invasive mosquito species that is expected to expand its global distribution through climate change. As poikilotherms, mosquitoes are greatly affected by the temperature of the environment which can impact host-seeking, blood-feeding, and flight activity as well as survival and ability to transmit pathogens. However, an important aspect of mosquito biology on which the effect of temperature has not been investigated is water and sugar-feeding and how access to a sugar source might affect the insect’s activity and survival under different thermal conditions. To close this knowledge gap, we relied on actometer experiments to study the activity of both female and male Ae. aegypti at 20 °C, 25 °C, and 30 °C, providing either water or 10% sucrose to the insects. We then measured the total carbohydrate contents of alive mosquitoes using the anthrone protocol. Survival was assessed and compared between all groups. Results from this study will inform on the thermal biology of Ae. aegypti mosquitoes and how access to sugar affects their activity.


2021 ◽  
Vol 15 (9) ◽  
pp. e0009815
Author(s):  
Garrett P. League ◽  
Ethan C. Degner ◽  
Sylvie A. Pitcher ◽  
Yassi Hafezi ◽  
Erica Tennant ◽  
...  

Background Aedes aegypti mosquitoes are globally distributed vectors of viruses that impact the health of hundreds of millions of people annually. Mating and blood feeding represent fundamental aspects of mosquito life history that carry important implications for vectorial capacity and for control strategies. Females transmit pathogens to vertebrate hosts and obtain essential nutrients for eggs during blood feeding. Further, because host-seeking Ae. aegypti females mate with males swarming near hosts, biological crosstalk between these behaviors could be important. Although mating influences nutritional intake in other insects, prior studies examining mating effects on mosquito blood feeding have yielded conflicting results. Methodology/Principal findings To resolve these discrepancies, we examined blood-feeding physiology and behavior in virgin and mated females and in virgins injected with male accessory gland extracts (MAG), which induce post-mating changes in female behavior. We controlled adult nutritional status prior to blood feeding by using water- and sugar-fed controls. Our data show that neither mating nor injection with MAG affect Ae. aegypti blood intake, digestion, or feeding avidity for an initial blood meal. However, sugar feeding, a common supplement in laboratory settings but relatively rare in nature, significantly affected all aspects of feeding and may have contributed to conflicting results among previous studies. Further, mating, MAG injection, and sugar intake induced declines in subsequent feedings after an initial blood meal, correlating with egg production and laying. Taking our evaluation to the field, virgin and mated mosquitoes collected in Colombia were equally likely to contain blood at the time of collection. Conclusions/Significance Mating, MAG, and sugar feeding impact a mosquito’s estimated ability to transmit pathogens through both direct and indirect effects on multiple aspects of mosquito biology. Our results highlight the need to consider natural mosquito ecology, including diet, when assessing their physiology and behavior in the laboratory.


Sign in / Sign up

Export Citation Format

Share Document