saturation deficit
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 13)

H-INDEX

20
(FIVE YEARS 1)

Oceans ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 785-810
Author(s):  
Pavan Harika Raavi ◽  
Kevin J. E. Walsh

The present study investigates the effect of increasing sea surface temperatures (SSTs) on tropical cyclone (TC) frequency using the high-resolution Australian Community Climate and Earth-System Simulator (ACCESS) model. We examine environmental conditions leading to changes in TC frequency in aqua-planet global climate model simulations with globally uniform sea surface temperatures (SSTs). Two different TC tracking schemes are used. The Commonwealth Scientific and Industrial Research Organization (CSIRO) scheme (a resolution-dependent scheme) detects TCs that resemble observed storms, while the Okubo–Weiss zeta parameter (OWZP) tracking scheme (a resolution-independent scheme) detects the locations within “marsupial pouches” that are favorable for TC formation. Both schemes indicate a decrease in the global mean TC frequency with increased saturation deficit and static stability of the atmosphere. The OWZP scheme shows a poleward shift in the genesis locations with rising temperatures, due to lower vertical wind shear. We also observe an overall decrease in the formation of tropical depressions (TDs) with increased temperatures, both for those that develop into TCs and non-developing cases. The environmental variations at the time of TD genesis between the developing and the non-developing tropical depressions identify the Okubo–Weiss (OW) parameter and omega (vertical mass flux) as significant influencing variables. Initial vortices with lower vorticity or with weaker upward mass flux do not develop into TCs due to environments with higher saturation deficit and stronger static stability of the atmosphere. The latitudinal variations in the large-scale environmental conditions account for the latitudinal differences in the TC frequency in the OWZP scheme.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zbigniew Zając ◽  
Joanna Kulisz ◽  
Aneta Woźniak ◽  
Katarzyna Bartosik ◽  
Adil Khan

AbstractDermacentor reticulatus ticks are one of the most important vectors and reservoirs of tick-borne pathogens in Europe. Changes in the abundance and range of this species have been observed in the last decade and these ticks are collected in areas previously considered tick-free. This may be influenced by progressive climate change. Eastern Poland is an area where the local population of D. reticulatus is one of the most numerous among those described so far. At the same time, the region is characterized by a significant increase in the mean air temperature in recent years (by 1.81 °C in 2020) and a decrease in the average number of days with snow cover (by 64 days in 2020) and in the number of days with frost (by 20 days in 2020) on an annual basis compared to the long-term average. The aim of our research was to investigate the rhythms of seasonal activity and the population size of D. reticulatus in the era of progressive climate change. To this end, questing ticks were collected in 2017–2020. Next, the weather conditions in the years of observation were analyzed and compared with multi-year data covering 30 years preceding the study. The research results show that, in eastern Poland, there is a stable population of D. reticulatus with the peak of activity in spring or autumn (up to a maximum of 359 individuals within 30 min of collection) depending on the year of observation. Ticks of this species may also be active in winter months. The activity of D. reticulatus is influenced by a saturation deficit.


2021 ◽  
Vol 2 (1) ◽  
pp. 016-027
Author(s):  
Hadda Mebarki ◽  
Ouassila Ziane ◽  
Hadjer Merbah ◽  
Hamenna Bouzerzour

Drought is a prominent limiting factor that impacts negatively durum wheat grain yield. Ten durum wheat breeding lines were evaluated under rainfall conditions at the Field Crop Institute Agricultural Experimental Station of Setif, Algeria, during the 2016/2017 cropping season. The investigation aimed to study the ability of flag leaf water status to discriminate among varieties for drought tolerance trait. Significant variability was observed among the tested varieties for leaf dry, wilted and turgid weights, leaf relative water content, water saturation deficit and excised water loss, after three wilting periods of 30, 60 and 90 minutes dehydration at 40°C. The assessed breeding lines were differentially categorized as drought tolerant and drought sensitive based on either relative water content or water saturation deficit or excised leaf water loss genotypic mean values. Correlation, principal components and cluster analyses indicated an unwanted significant association between excised leaf water loss and relative water content and water saturation deficit and classified the assessed entries into three clusters (CI, C2 and C3). Cluster C1 had high relative water content, low water saturation deficit but high excised water loss, while C3 had low relative water content, low excised leaf water but high-water saturation deficit, C2 being intermediate. Crosses between distant clusters (C1 vs C3) are proposed to generate more variability of the targeted traits in progeny population and to break undesirable linkage between alleles controlling leaf water status, allowing to select efficiently drought tolerant genotypes.


2021 ◽  
Vol 18 (4) ◽  
pp. 1499-1510
Author(s):  
Marcus Breil ◽  
Edouard L. Davin ◽  
Diana Rechid

Abstract. Uncertainties in the evapotranspiration response to afforestation constitute a major source of disagreement between model-based studies of the potential climate benefits of forests. Forests typically have higher evapotranspiration rates than grasslands in the tropics, but whether this is also the case in the midlatitudes is still debated. To explore this question and the underlying physical processes behind these varying evapotranspiration rates of forests and grasslands in more detail, a regional model study with idealized afforestation scenarios was performed for Europe. In the first experiment, Europe was maximally forested, and in the second one, all forests were turned into grassland. The results of this modeling study exhibit the same contradicting evapotranspiration characteristics of forests and grasslands as documented in observational studies, but by means of an additional sensitivity simulation in which the surface roughness of the forest was reduced to grassland, the mechanisms behind these varying evapotranspiration rates could be revealed. Due to the higher surface roughness of a forest, solar radiation is more efficiently transformed into turbulent sensible heat fluxes, leading to lower surface temperatures (top of vegetation) than in grassland. The saturation deficit between the vegetation and the atmosphere, which depends on the surface temperature, is consequently reduced over forests. This reduced saturation deficit counteracts the transpiration-facilitating characteristics of a forest (deeper roots, a higher leaf area index, LAI, and lower albedo values than grassland). If the impact of the reduced saturation deficit exceeds the effects of the transpiration-facilitating characteristics of a forest, evapotranspiration is reduced compared to grassland. If not, evapotranspiration rates of forests are higher. The interplay of these two counteracting factors depends on the latitude and the prevailing forest type in a region.


2020 ◽  
Vol 14 (10) ◽  
pp. e0008244
Author(s):  
Kara Fikrig ◽  
Sonile Peck ◽  
Peter Deckerman ◽  
Sharon Dang ◽  
Kimberly St Fleur ◽  
...  

Background Sugar feeding is an important behavior which may determine vector potential of female mosquitoes. Sugar meals can reduce blood feeding frequency, enhance survival, and decrease fecundity, as well as provide energetic reserves to fuel energy intensive behaviors such as mating and host seeking. Sugar feeding behavior can be harnessed for vector control (e.g. attractive toxic sugar baits). Few studies have addressed sugar feeding of Aedes albopictus, a vector of arboviruses of public health importance, including dengue and Zika viruses. To address this knowledge gap, we assessed sugar feeding patterns of Ae. albopictus for the first time in its invasive northeastern USA range. Methodology/Principal findings Using the cold anthrone fructose assay with robust sample sizes, we demonstrated that a large percentage of both male (49.6%) and female (41.8%) Ae. albopictus fed on plant or homopteran derived sugar sources within 24 hrs prior to capture. Our results suggest that sugar feeding behavior increases when environmental conditions are dry (high saturation deficit) and may vary by behavioral status (host seeking vs. resting). Furthermore, mosquitoes collected on properties with flowers (>3 blooms) had higher fructose concentrations compared to those collected from properties with few to no flowers (0–3). Conclusions/Significance Our results provide the first evidence of Ae. albopictus sugar feeding behavior in the Northeastern US and reveal relatively high rates of sugar feeding. These results suggest the potential success for regional deployment of toxic sugar baits. In addition, we demonstrate the impact of several environmental and mosquito parameters (saturation deficit, presence of flowers, host seeking status, and sex) on sugar feeding. Placing sugar feeding behavior in the context of these environmental and mosquito parameters provides further insight into spatiotemporal dynamics of feeding behavior for Ae. albopictus, and in turn, provides information for evidence-based control decisions.


2020 ◽  
Author(s):  
Marcus Breil ◽  
Edouard L. Davin ◽  
Diana Rechid

Abstract. Uncertainties in the evapotranspiration response to afforestation constitute a major source of disagreement between model-based studies of the potential climate benefits of forests. Forests typically have higher evapotranspiration rates than grassland in the tropics, but whether this is also the case in the mid-latitudes is still debated. To explore this question and the underlying physical processes behind these varying evapotranspiration rates of forests and grasslands in more detail, a regional model study with idealized afforestation scenarios was performed for Europe. In the first experiment Europe was maximally forested and in the second one, all forests were turned into grassland. The results of this modelling study exhibit the same contradicting evapotranspiration characteristics of forests and grasslands as documented in observational studies. But by means of an additional sensitivity simulation, in which the surface roughness of forest was reduced to grassland, the mechanisms behind these varying evapotranspiration rates could be revealed. Due to the higher surface roughness of a forest, solar radiation is more efficiently transformed into turbulent sensible heat fluxes, leading to lower surface temperatures (top of vegetation) than in grassland. The saturation deficit between the vegetation and the atmosphere, which depends on the surface temperature, is consequently reduced over forests. This reduced saturation deficit counteracts the transpiration facilitating characteristics of a forest (deeper roots, a higher LAI and lower albedo values than grassland). If the impact of the reduced saturation deficit exceeds the effects of the transpiration facilitating characteristics of a forest, evapotranspiration is reduced compared to grassland. If not, evapotranspiration rates of forests are higher. The interplay of these two counteracting factors depends on the latitude and the prevailing forest type in a region.


2019 ◽  
Vol 45 (1) ◽  
pp. 45-54
Author(s):  
Mst Shahnaz Sultana ◽  
MA Halim ◽  
Feroza Hossain ◽  
M Abdul Karim ◽  
Mohammad Talim Hossain

Salt tolerance in relation to water status and plant nutrients of two mungbean varieties, BARImung 2 (salinity sensitive) and BUmung 2 (salinity tolerant) was evaluated. The seeds were grown in pots and treated with NaCl levels of 0 (control), 100 and 200 mM. Different parameters related to water relations as well as mineral nutritients were measured. The exudation rate and relative water content were decreased but water saturation deficit was increased by salinity in both the varieties. In BARImung 2 plants, the exudation rate and relative water content were lower but water saturation deficit was higher than those in BUmung 2 at both 100 and 200 mM NaCl levels. Salinity also influenced the accumulation of Na, K, Ca and Mg in leaves, stems and roots of the two said mungbean varieties. Sodium accumulation was inceseased in all the plant-parts of both the varieties in the order of stem > root > leaf but in BUmung 2 the accumulation was lower than that of BARImung 2 except in root. Potassium accumulation deceresed in all parts of both the mungbean varieties but that was lower in BUmung 2 than that of BARImung 2. The contents of Ca and Mg in all the plant-parts increased more in BUmung 2 than those of BARImung 2 with the increase of salinity levels. All these results indicated that high salt tolerance in BUmung 2 was associated with its better water status, more or less uniform mineral nutrient (Ca and Mg) distribution in different plantparts than that in BARImung 2. Asiat. Soc. Bangladesh, Sci. 45(1): 45-54, June 2019


2019 ◽  
Vol 32 (2) ◽  
pp. 482-492
Author(s):  
GEOVANI SOARES DE LIMA ◽  
HANS RAJ GHEYI ◽  
REGINALDO GOMES NOBRE ◽  
LAURIANE ALMEIDA DOS ANJOS SOARES ◽  
JOÃO BATISTA DOS SANTOS

ABSTRACT Castor bean is an oilseed crop which is able to adapt to various edaphoclimatic conditions and has considerable contents of oil in its seeds, with potential for use in the castor oil industry. In this context, this study aimed to evaluate changes in membrane damage, water status and gas exchanges in castor bean plants (cv. ‘BRS Energia’) in response to irrigation water salinity and cationic composition. Randomized blocks were used to test six cationic compositions (S1 - Control; S2 - Na+; S3 - Ca2+; S4 - Na+ + Ca2+; S5 - K+ and S6 - Na+ + Ca2+ + Mg2+), in four replicates. Plants in the control treatment were subjected to irrigation using water of low electrical conductivity (S1 - ECw = 0.6 dS m-1), whereas those in the other treatments were irrigated using 4.5 dS m-1 water prepared with different cations. Higher leaf succulence associated with lower water saturation deficit is an indication of tolerance to salt stress in castor bean plants irrigated with K+-rich water. The presence of Na+ in irrigation water caused the highest water saturation deficit in castor bean leaf blades. The lowest damage in cell membranes was observed in plants irrigated with Ca2+-rich water. The damaging effect of salt stress on castor bean gas exchanges depends on the cationic composition of water and occurred in the following order: Na+>Na++Ca2+>Ca2+> Na++Ca2++Mg2+>K+.


Sign in / Sign up

Export Citation Format

Share Document