scholarly journals Blockade of VEGFR2 and Not VEGFR1 Can Limit Diet-Induced Fat Tissue Expansion: Role of Local versus Bone Marrow-Derived Endothelial Cells

PLoS ONE ◽  
2009 ◽  
Vol 4 (3) ◽  
pp. e4974 ◽  
Author(s):  
Joshua Tam ◽  
Dan G. Duda ◽  
Jean Y. Perentes ◽  
Rehan S. Quadri ◽  
Dai Fukumura ◽  
...  
2004 ◽  
Vol 286 (5) ◽  
pp. H1608-H1614 ◽  
Author(s):  
Katherine C. Wood ◽  
Robert P. Hebbel ◽  
D. Neil Granger

Whereas the adhesion of leukocytes and erythrocytes to vascular endothelium has been implicated in the vasooclusive events associated with sickle cell disease, the role of platelet-vessel wall interactions in this process remains undefined. The objectives of this study were to: 1) determine whether the adhesion of platelets and leukocytes in cerebral venules differs between sickle cell transgenic (βS) mice and their wild-type (WT) counterparts (C57Bl/6) under both resting and posthypoxic conditions, and 2) define the contributions of P-selectin to these adhesion processes. Animals were anesthetized, and platelet and leukocyte interactions with endothelial cells of cerebral postcapillary venules were monitored and quantified using intravital fluorescence microscopy in WT, βS, and chimeric mice produced by transplanting bone marrow from WT or βSmice into WT or P-selectin-deficient (P-sel–/–) mice. Platelet and leukocyte adhesion to endothelial cells in both unstimulated and posthypoxic βSmice were significantly elevated over WT levels. Chimeric mice involving bone marrow transfer from βSmice to P-sel–/–mice exhibited a profound attenuation of both platelet and leukocyte adhesion compared with βSbone marrow transfer to WT mice. These findings indicate that βSmice assume both an inflammatory and prothrombogenic phenotype, with endothelial cell P-selectin playing a major role in mediating these microvascular responses.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2450-2450
Author(s):  
Pedro De Alarcon ◽  
Manu Gnanamony ◽  
Jessica Garcia

Abstract Introduction: Iron deficiency (ID) is one of the recognized causes of reactive thrombocytosis in children. Factors that are commonly associated with megakaryopoiesis such as thrombopoietin (TPO), interleukin 6 (IL-6) and IL-11 are not altered in patients with iron deficiency and thrombocytosis suggesting the role of alternate mechanisms in controlling this process. We have previously shown using an ID rat model that ID increased the number of megakaryocytes in the bone marrow. We have also shown an increase in VEGFR (FLT1) and CXCR4 staining in bone marrow slides of ID rats. This data suggests that angiogenesis plays a vital role in the development of reactive thrombocytosis in response to ID. In this report, we have expanded our study to identify specific angiogenic signaling molecules associated with ID and used functional assays to validate it. Methods: For this study, we used the megakaryoblast cell line MEG-01 as an in vitro model of megakaryopoiesis. MEG-01 cells were adapted to grow in chemically defined serum free medium containing iron (iron replete media). For iron deficiency, serum free iron free media was mixed with iron replete media at a 1% v/v concentration (iron deplete media). For our experiments, MEG-01 cells were grown in both iron replete and depleted media for 7 days. Cell viability was measured using the trypan blue exclusion assay. Messenger-RNA expression of iron-related markers (TFR1, TFR2, FLT1, FLT3, FTL, FTH1, TF, HMOX1 and HMOX2) and angiogenic markers (VEGFA, VEGFB, VEGFC, PDGF, ANGPTL1, ANGPTL2, FGF2) was studied using real time PCR. We performed functional validation of angiogenesis with an in vitro tube formation assay using human umbilical vein endothelial (HUVEC) cells. For statistical analysis of the data we performed the t test using graph pad prism software and we considered p<0.05 as statistically significant. Results: In low iron conditions, MEG-01 cells showed a significant increase in FLT1 (4 fold) and FLT3 (3 fold) expression using real time PCR (p<0.001). Iron deficiency also induced a 2 fold increase in the mRNA expression of angiogenic molecules VEGFB, VEGFC, FGF2 and PDGFA (p<0.001). Using the tube formation assay, we also show that conditioned media collected from iron deficient MEG-01 cells induced increased vessel formation in endothelial cells. Conclusion: In this study, we were able to validate our earlier in vivo findings on iron deficiency induced reactive thrombocytosis. We show that cells adapt to low iron conditions by upregulating FLT1, FLT3 and FTL. We also show that several markers in the angiogenesis pathway like VEGFB, VEGFC, FGF2 and PDGFA are upregulated in response to iron deficiency. We were also able to show that an increase in these angiogenic molecules induced increased vessel formation in endothelial cells. This report, along with our previous findings, points to the importance of the angiogenic pathway in reactive thrombocytosis induced by iron deficiency. Disclosures No relevant conflicts of interest to declare.


Oncotarget ◽  
2016 ◽  
Vol 7 (12) ◽  
pp. 14510-14521 ◽  
Author(s):  
Aurelia Lamanuzzi ◽  
Ilaria Saltarella ◽  
Arianna Ferrucci ◽  
Roberto Ria ◽  
Simona Ruggieri ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5080-5080
Author(s):  
Shankaranarayana Paneesha ◽  
Raghu Adya ◽  
Hemali Khanji ◽  
Ed Leung ◽  
C. Vijayasekar ◽  
...  

Abstract Multiple myeloma is a clonal lymphoproliferative disorder characterised by the proliferation of plasma cells in the bone marrow. Inspite of good initial response, it is associated with universal relapse. We hypothesise this is due to sanctuary provided to myeloma cells by the endothelium. Matrix metalloproteinases (MMPs) are shown play a role in cell growth, invasion, angiogenesis, metastasis and bone degradation. We show here the protection offered by endothelial cells to human myeloma cell lines in in-vitro co-culture with upregulation of MMP-2 & 9 and the role of GM6001 MMP inhibitor (Ilomastat) in overcoming this protection. Human myeloma cell lines (H929, RPMI 8226, U266 & JJN3) with or without endothelial cells (human umbilical vein endothelial cells and EaHy 926 cell line) in-vitro co-culture were treated with melphalan, dexamethasone, arsenic trioxide and Ilomastat. Cytotoxicity/proliferation were assessed by the alamarBlue™ assay (Serotec) and validated by Annexin V-FITC apoptosis detection Kit (Calbiochem) and BrDU proliferation assay (BD Pharmingen™). Gelatin Zymography was used to demonstrate activity of MMP-2 & 9 in the supernatant. MMP-2 and 9 mRNA expression was quantified by Real Time Quantitative PCR (ROCHE). Co-culture of human myeloma cell lines with endothelial cells lead to increase in the proliferation of myeloma cell lines and also protected them from the cytotoxicity of chemotherapeutic agents. MMP-2 & 9 activity was upregulated by the co-culture. MMP-2 mRNA expression in human myeloma cell lines increased following 4 hr co-culture. Treatments with Ilomastat lead to the suppression of proliferation in co-culture in a dose dependent manner, associated with a reduction of MMP-2 and 9 activity. Our study shows endothelial cells offer protection to human myeloma cell lines in the presence of cytotoxic agents. This may result in the sanctuary of myeloma cells in bone marrow leading to ultimate relapse of disease. Our study also demonstrates the upregulation of MMP-2 and 9 by co-culture and increased cytotoxicity achieved by the inhibition of MMPs. Further studies are needed to determine the exact role of MMPs in myeloma biology as MMP inhibition may be an interesting therapeutic target and help in averting relapse in multiple myeloma.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 951-951 ◽  
Author(s):  
Abdel Kareem Azab ◽  
Phong Quang ◽  
Feda Azab ◽  
Costas M Pitsillides ◽  
John T Patton ◽  
...  

Abstract Abstract 951 INTRODUCTION: Multiple Myeloma (MM) is characterized by widespread disease at diagnosis with the presence of multiple lytic lesions and disseminated involvement of the bone marrow (BM), implying that the progression of MM involves a continuous re-circulation of the MM cells in the peripheral blood and re-entrance into the BM. Selectins are adhesion molecules expressed by activated endothelium of venules and leukocytes, and are involved in the primary interaction of lymphocytes with the endothelium of blood vessels. The binding of selectins serves as a biologic brake, making leukocyte quickly decelerate by rolling on endothelial cells, as the first step of extravasation. In this study, we have investigated the role of selectins and their ligands in the regulation of homing of MM Cells to the BM and the therapeutic implications of this role. METHODS AND RESULTS: We have used flow cytometry to characterize the expression of E, L and P-selectins and their ligands on MM cell lines, patient samples and on plasma cells from normal subjects. We found that all MM cell lines and patient samples showed high expression of L and P, but little of no E-selectin. While normal plasma cells showed low expression of all selectins and ligands.(give numbers) A pan-selectin inhibitor GMI-1070 (GlycoMimetics Inc., Gaithersburg, MD) inhibited the interaction of recombinant selectins with the selectin-ligands on the MM cells in a dose response manner. We have tested the role of the selectins and their ligands on the adhesion of MM cells to endothelial cells and found that MM cells adhered preferentially to endothelial cells expressing P-selectin compared to control endothelial cells and endothelial cells expressing E-selectin (p<0.05). Moreover, we found that blockade of P-selectin on endothelial cells reduced their interaction with MM cells (p<0.01), while blockade of E and L-selectin did not show any effect. Treating endothelial cells with GMI-1070 mimicked the effect of blocking P-selectin. Moreover, we found that treating endothelial cells with the chemokine stroma cell-derived factor-1-alpha (SDF1) increased their expression of P but not E or L-selectin detected by flow cytometry. Neither the blockade of each of the selectins and their ligands nor the GMI-1070 inhibited the trans-well chemotaxis of MM cells towards SDF1-alpha. However, blockade of P-selectin (p<0.001) on endothelial cells by GMI-1070 inhibited the trans-endothelial chemotaxis of MM cells towards SDF1-alpha. Both adhesion to endothelial cells and activation with recombinant P-selectin induced phosphorylation of cell adhesion related molecules including FAK, SRC, Cadherins, Cofilin, AKT and GSK3. GMI-1070 decreased the activation of cell adhesion molecules induced by both recombinant P-selectin and endothelial cells. Using in vivo flow cytometry we found that both anti P-selectin antibody and GMI-1070 prevented the extravasation of MM cells out of blood vessels into the bone marrow in mice. Moreover, we found that, in a co-culture system, endothelial cells protected MM cells from bortezomib induced apoptosis, an effect which was reversed by using GMI-1070, showing synergistic effect with bortezomib. CONCLUSION: In summary, we showed that P-selectin ligand is highly expressed in MM cells compared to normal plasma cells, and that it plays a major role in homing of MM cells to the BM, an effect which was inhibited by the pan-selectin inhibitor GMI-1070. This provides a basis for testing the effect of selectin inhibition on tumor initiation and tumor response to therapeutic agents such as bortezomib. Moreover, it provides a basis for future clinical trials for prevention of MM metastasis and increasing efficacy of existing therapies by using selectin inhibitors for the treatment of myeloma. Disclosures: Patton: GlycoMimetics, Inc: Employment. Smith:GlycoMimetics, Inc: Employment. Sarkar:GlycoMimetics, Inc: Employment. Anderson:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Magnani:GlycoMimetics, Inc.: Employment. Ghobrial:Millennium: Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Speakers Bureau; Novartis: Honoraria, Speakers Bureau.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 27-27
Author(s):  
Makoto Kondo ◽  
Pingnan Xiao ◽  
Lakshmi Sandhow ◽  
Monika Dolinska ◽  
Thibault Bouderlique ◽  
...  

Abstract Myelosuppression is a life-threatening complication of anti-cancer therapy including irradiation. Rapid and complete hematopoietic recovery after therapy-induced myelosuppression is required for a successful treatment outcome. This process relies on efficient regeneration of hematopoietic stem cells (HSCs) and is tightly controlled by bone marrow (BM) microenvironment consisting of mesenchymal stem/progenitor cells, endothelial cells as well as secreted factors including cytokines and extracellular matrix proteins (ECM). However, the extrinsic factors critical for promoting the hematopoietic recovery remain poorly understood. Laminins are heterotrimetric ECM composed of α, β, and γ chains. Laminin α4 chain (LAMA4) is an active component for laminin-411 and -421, which are located in vascular basement membrane. LAMA4 plays an important role for HSC homing after transplantation via interaction with laminin receptor integrin α6 (Qian H et al., Blood 2006). However, the role of LAMA4 in normal hematopoiesis and HSC reconstitution after irradiation-induced myelosuppression is not known. In this study, we first detected Lama4 gene expression in BM endothelial cells (CD31+), mesenchymal stem cells (MSC: CD45-Ter119-CD31-CD44-Sca1+CD51+), and mesenchymal progenitor cells (MPC: CD45-Ter119-CD31-CD44-Sca1-CD51+) in young adult mice. By using Lama4 deficient (Lama4-/-) mice, we analyzed the functional role of LAMA4 on hematopoietic activity at steady state. We found the lower number of platelets (PLTs) (p = 0.03), and neutrophils (Gr1+CD11b+) (p = 0.03) in the peripheral blood (PB) of Lama4-/- mice, but a higher frequency of common myeloid progenitor (Lin-Sca1-Kit+CD34+FcRlow) (p < 0.01) in the Lama4-/- BM at steady state, indicating that LAMA4 plays a role in the maintenance of physiological hematopoiesis. The important role of LAMA4 in hematopoietic recovery was demonstrated by delayed and incomplete recoveries of mature red blood cells, PLTs, and Gr1+CD11b+ cells in PB following sublethal irradiation (7Gy). The impaired recovery of erythropoiesis was also indicated by the higher values of mean corpuscular hemoglobin and mean corpuscular volume in PB as well as the higher frequency of megakaryocyte-erythrocyte progenitor (Lin-Sca1-Kit+CD34-FcR-) (p < 0.01) and colony-forming unit-erythrocyte (CFU-E) (p = 0.03) in the BM of the Lama4-/- mice at 6 weeks after irradiation, suggesting blocked erythrocyte maturation. In keeping with the refractory neutropenia, the frequency of colony-forming unit-granulocyte-macrophage (CFU-GM) was lower in the Lama4-/- BM compared to that in the age- and gender-matched wild type mice (p = 0.04). These data indicate that LAMA4 is critical for multiple hematopoietic lineage reconstitution post irradiation. To investigate the cellular and molecular mechanisms underlying the critical role of LAMA4 in hematopoietic recovery after the irradiation, we characterized the BM niche by colony assay, flow cytometry immunophenotyping, quantitative real time PCR (qPCR), and histological analysis. The number of colony-forming unit-fibroblast (CFU-F) was comparable between wild type and Lama4-/- in steady state. Interestingly, the proportion of BM MPCs, a population containing osteoblast progenitors, was significantly lower in the Lama4-/- mice compared to that in the wild type controls at steady state (p < 0.01). qPCR analysis showed downregulation of Il6 (p < 0.05) in the MSC and Angpt1 (p = 0.02) in the MPC of the Lama4-/-mice post irradiation. These data suggest that Lama4 deficiency alters BM stromal cell composition and gene expressions, which may be related to the impaired hematopoietic reconstitution. The recovery of BM vascular structure is essential for efficient reconstitution of hematopoiesis. We observed uniquely dilated blood vessels in Lama4-/- BM at 6-week post irradiation. This might be caused by the lower Angpt1 expression in Lama4-/- MPC since Angpt1/Tie2 signaling is required for vascular regeneration (Kopp HG et al., Blood 2005, Zhou BO et al., eLife 2015). The functional consequences of this phenotype are still under investigation. Altogether, LAMA4 is required for rapid and complete hematopoietic recovery post irradiation-induced myelosuppression. Therapeutic strategies to upregulate Lama4 may facilitate the recovery of hematopoiesis following HSC transplantation under preconditioning using irradiation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 113 (19) ◽  
pp. 4810-4818 ◽  
Author(s):  
Hiroshi Kimura ◽  
Hiroki Miyashita ◽  
Yasuhiro Suzuki ◽  
Miho Kobayashi ◽  
Kazuhide Watanabe ◽  
...  

Abstract We recently isolated a novel angiogenesis inhibitor, vasohibin-1, and its homologue, vasohibin-2. In this study we characterize the role of these 2 molecules in the regulation of angiogenesis. In a mouse model of subcutaneous angiogenesis, the expression of endogenous vasohibin-1 was low in proliferating ECs at the sprouting front but high in nonproliferating endothelial cells (ECs) in the termination zone. In contrast, endogenous vasohibin-2 was preferentially expressed in mononuclear cells mobilized from bone marrow that infiltrated the sprouting front. When applied exogenously, vasohibin-1 inhibited angiogenesis at the sprouting front where endogenous vasohibin-1 was scarce but did not influence vascularity in the termination zone where endogenous vasohibin-1 was enriched. Exogenous vasohibin-2 prevented the termination of angiogenesis in the termination zone and increased vascularity in this region. Angiogenesis was persistent in the termination zone in the vasohibin-1 knockout mice, whereas angiogenesis was deficient at the sprouting front in the vasohibin-2 knockout mice. Supplementation of deficient proteins normalized the abnormal patterns of angiogenesis in the vasohibin knockout mice. These results indicate that vasohibin-1 is expressed in ECs in the termination zone to halt angiogenesis, whereas vasohibin-2 is expressed in infiltrating mononuclear cells in the sprouting front to promote angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document