scholarly journals Vpu Downmodulates Two Distinct Targets, Tetherin and Gibbon Ape Leukemia Virus Envelope, through Shared Features in the Vpu Cytoplasmic Tail

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51741 ◽  
Author(s):  
Tiffany M. Lucas ◽  
Sanath K. Janaka ◽  
Edward B. Stephens ◽  
Marc C. Johnson
2001 ◽  
Vol 75 (9) ◽  
pp. 4129-4138 ◽  
Author(s):  
Ilias Christodoulopoulos ◽  
Paula M. Cannon

ABSTRACT Pseudotyping retrovirus and lentivirus vectors with different viral fusion proteins is a useful strategy to alter the host range of the vectors. Although lentivirus vectors are efficiently pseudotyped by Env proteins from several different subtypes of murine leukemia virus (MuLV), the related protein from gibbon ape leukemia virus (GaLV) does not form functional pseudotypes. We have determined that this arises because of an inability of GaLV Env to be incorporated into lentivirus vector particles. By exploiting the homology between the GaLV and MuLV Env proteins, we have mapped the determinants of incompatibility in the GaLV Env. Three modifications that allowed GaLV Env to pseudotype human immunodeficiency virus type 1 particles were identified: removal of the R peptide (C-terminal half of the cytoplasmic domain), replacement of the whole cytoplasmic tail with the corresponding MuLV region, and mutation of two residues upstream of the R peptide cleavage site. In addition, we have previously proposed that removal of the R peptide from MuLV Env proteins enhances their fusogenicity by transmitting a conformational change to the ectodomain of the protein (Y. Zhao et al., J. Virol. 72:5392–5398, 1998). Our analysis of chimeric MuLV/GaLV Env proteins provides further evidence in support of this model and suggests that proper Env function involves both interactions within the cytoplasmic tail and more long-range interactions between the cytoplasmic tail, the membrane-spanning region, and the ectodomain of the protein.


2009 ◽  
Vol 84 (6) ◽  
pp. 2666-2674 ◽  
Author(s):  
Tiffany M. Lucas ◽  
Terri D. Lyddon ◽  
Paula M. Cannon ◽  
Marc C. Johnson

ABSTRACT The Env protein from gibbon ape leukemia virus (GaLV) has been shown to be incompatible with human immunodeficiency virus type 1 (HIV-1) in the production of infectious pseudotyped particles. This incompatibility has been mapped to the C-terminal cytoplasmic tail of GaLV Env. Surprisingly, we found that the HIV-1 accessory protein Vpu modulates this incompatibility. The infectivity of HIV-1 pseudotyped with murine leukemia virus (MLV) Env was not affected by Vpu. However, the infectivity of HIV-1 pseudotyped with an MLV Env with the cytoplasmic tail from GaLV Env (MLV/GaLV Env) was restricted 50- to 100-fold by Vpu. A Vpu mutant containing a scrambled membrane-spanning domain, VpuRD, was still able to restrict MLV/GaLV Env, but mutation of the serine residues at positions 52 and 56 completely alleviated the restriction. Loss of infectivity appeared to be caused by reduced MLV/GaLV Env incorporation into viral particles. The mechanism of this downmodulation appears to be distinct from Vpu-mediated CD4 downmodulation because Vpu-expressing cells that failed to produce infectious HIV-1 particles nonetheless continued to display robust surface MLV/GaLV Env expression. In addition, if MLV and HIV-1 were simultaneously introduced into the same cells, only the HIV-1 particle infectivity was restricted by Vpu. Collectively, these data suggest that Vpu modulates the cellular distribution of MLV/GaLV Env, preventing its recruitment to HIV-1 budding sites.


1996 ◽  
Vol 7 (12) ◽  
pp. 1415-1422 ◽  
Author(s):  
John S. Lam ◽  
Mark E. Reeves ◽  
Robert Cowherd ◽  
Steven A. Rosenberg ◽  
Patrick Hwu

2013 ◽  
Vol 87 (23) ◽  
pp. 12805-12813 ◽  
Author(s):  
Sanath Kumar Janaka ◽  
Devon A. Gregory ◽  
Marc C. Johnson

Nonnative viral glycoproteins, including Friend murine leukemia virus envelope (F-MLV Env) are actively recruited to HIV-1 assembly sites by an unknown mechanism. Because interactions with the lipid microenvironment at budding sites could contribute to recruitment, we examined the contribution of the hydrophobicity of the F-MLV Env membrane-spanning domain (MSD) to its incorporation into HIV-1 particles. A series of F-MLV Env mutants that added or deleted one, two, or three leucines in the MSD were constructed. All six mutants retained the ability to be incorporated into HIV-1 particles, but the −1L, −2L, −3L, +1L, and +2L mutants were not capable of producing infectious particles. Surprisingly, the +3L Env glycoprotein was able to produce infectious particles and was constitutively fusogenic. However, when the cytoplasmic tail domains (CTDs) in the Env constructs were deleted, all six of the MSD mutants were able to produce infectious particles. Further mutational analyses revealed that the first 10 amino acids of the CTD is a critical regulator of infectivity. A similar phenotype was observed in HIV-1 Env upon addition of leucines in the MSD, with +1 and +2 leucine mutations greatly reducing Env activity, but +3 leucine mutations behaving similar to the wild type. Unlike F-MLV Env (+1L and +2L), HIV-1 Env (+1L and +2L) infectivity was not restored by deletion of the CTD. We hypothesize that the CTD forms a coiled-coil that disrupts the protein's functionality if it is not in phase with the trimer interface of the ectodomain.


2003 ◽  
Vol 77 (2) ◽  
pp. 1281-1291 ◽  
Author(s):  
Hector C. Aguilar ◽  
W. French Anderson ◽  
Paula M. Cannon

ABSTRACT The envelope (Env) protein of Moloney murine leukemia virus (MoMuLV) is a homotrimeric complex whose monomers consist of linked surface (SU) and transmembrane (TM) proteins cleaved from a precursor protein by a cellular protease. In addition, a significant fraction of virion-associated TM is further processed by the viral protease to remove the C-terminal 16 amino acids of the cytoplasmic domain, the R peptide. This cleavage greatly enhances the fusogenicity of the protein and is necessary for the formation of a fully functional Env protein complex. We have previously proposed that R peptide cleavage enhances fusogenicity by altering the conformation of the ectodomain of the protein (Y. Zhao et al., J. Virol. 72:5392-5398, 1998). Using a series of truncation and point mutants of MoMuLV Env, we now provide direct biochemical and immunological evidence that the cytoplasmic tail and the membrane-spanning region of Env can influence the overall structure of the ectodomain of the protein and alter the strength of the SU-TM interaction. The R-peptide-truncated form of the protein, in particular, exhibits a markedly different conformation than the full-length protein.


2001 ◽  
Vol 75 (5) ◽  
pp. 2337-2344 ◽  
Author(s):  
Min Li ◽  
Chinglai Yang ◽  
Richard W. Compans

ABSTRACT During viral maturation, the cytoplasmic tail of the murine leukemia virus (MuLV) envelope (Env) protein undergoes proteolytic cleavage by the viral protease to release the 16-amino-acid R peptide, and this cleavage event activates the Env protein's fusion activity. We introduced Gly and/or Ser residues at different positions upstream of the R peptide in the cytoplasmic tail of the Friend MuLV Env protein and investigated their effects on fusion activity. Expression in HeLa T4 cells of a mutant Env protein with a single Gly insertion after I619, five amino acids upstream from the R peptide, induced syncytium formation with overlaid XC cells. Env proteins containing single or double Gly-Ser insertions after F614, 10 amino acids upstream from the R peptide, induced syncytium formation, and mutant proteins with multiple Gly insertions induced various levels of syncytium formation between HeLa T4 and XC cells. Immunoprecipitation and surface biotinylation assays showed that most of the mutants had surface expression levels comparable to those of the wild-type or R peptide-truncated Env proteins. Fluorescence dye redistribution assays also showed no hemifusion in the Env proteins which did not induce fusion. Our results indicate that insertion mutations in the cytoplasmic tail of the MuLV Env protein can suppress the inhibitory effect of the R peptide on membrane fusion and that there are differences in the effects of insertions in two regions in the cytoplasmic tail upstream of the R peptide.


Sign in / Sign up

Export Citation Format

Share Document