syncytium formation
Recently Published Documents


TOTAL DOCUMENTS

392
(FIVE YEARS 40)

H-INDEX

55
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Qian Wang ◽  
Saumya Anang ◽  
Sho Iketani ◽  
Yicheng Guo ◽  
Lihong Liu ◽  
...  

The recently emerged B.1.1.529 (Omicron) SARS-CoV-2 variant has a highly divergent spike (S) glycoprotein. We compared the functional properties of B.1.1.529 S with those of previous globally prevalent SARS-CoV-2 variants, D614G and B.1.617.2. Relative to these variants, B.1.1.529 S exhibits decreased processing, resulting in less efficient syncytium formation and lower S incorporation into virus particles. Nonetheless, B.1.1.529 S supports virus infection equivalently. B.1.1.529 and B.1.617.2 S glycoproteins bind ACE2 with higher affinity than D614G S. The unliganded B.1.1.529 S trimer is less stable at low temperatures than the other SARS-CoV-2 spikes, a property related to spike conformation. Upon ACE2 binding, the B.1.1.529 S trimer sheds S1 at 37 degrees but not at 0 degrees C. B.1.1.529 pseudoviruses are relatively resistant to neutralization by sera from convalescent COVID-19 patients and vaccinees. These properties of the B.1.1.529 spike glycoprotein likely influence the transmission, cytopathic effects and immune evasion of this emerging variant.


2021 ◽  
Vol 22 (21) ◽  
pp. 11609
Author(s):  
ChihSheng New ◽  
Zhao-Yong Lee ◽  
Kai Sen Tan ◽  
Amanda Huee-Ping Wong ◽  
De Yun Wang ◽  
...  

Tetraspanins are transmembrane glycoproteins that have been shown increasing interest as host factors in infectious diseases. In particular, they were implicated in the pathogenesis of both non-enveloped (human papillomavirus (HPV)) and enveloped (human immunodeficiency virus (HIV), Zika, influenza A virus, (IAV), and coronavirus) viruses through multiple stages of infection, from the initial cell membrane attachment to the syncytium formation and viral particle release. However, the mechanisms by which different tetraspanins mediate their effects vary. This review aimed to compare and contrast the role of tetraspanins in the life cycles of HPV, HIV, Zika, IAV, and coronavirus viruses, which cause the most significant health and economic burdens to society. In doing so, a better understanding of the relative contribution of tetraspanins in virus infection will allow for a more targeted approach in the treatment of these diseases.


Placenta ◽  
2021 ◽  
Vol 114 ◽  
pp. 150-151
Author(s):  
Asako Inohaya ◽  
Yoshitsugu Chigusa ◽  
Yu Matsuzaka ◽  
Eriko Yasuda ◽  
Masahito Takakura ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1973
Author(s):  
Jiajia Tang ◽  
Giada Frascaroli ◽  
Xuan Zhou ◽  
Jan Knickmann ◽  
Wolfram Brune

Cell–cell fusion is a fundamental and complex process that occurs during reproduction, organ and tissue growth, cancer metastasis, immune response, and infection. All enveloped viruses express one or more proteins that drive the fusion of the viral envelope with cellular membranes. The same proteins can mediate the fusion of the plasma membranes of adjacent cells, leading to the formation of multinucleated syncytia. While cell–cell fusion triggered by alpha- and gammaherpesviruses is well-studied, much less is known about the fusogenic potential of betaherpesviruses such as human cytomegalovirus (HCMV) and human herpesviruses 6 and 7 (HHV-6 and HHV-7). These are slow-growing viruses that are highly prevalent in the human population and associated with several diseases, particularly in individuals with an immature or impaired immune system such as fetuses and transplant recipients. While HHV-6 and HHV-7 are strictly lymphotropic, HCMV infects a very broad range of cell types including epithelial, endothelial, mesenchymal, and myeloid cells. Syncytia have been observed occasionally for all three betaherpesviruses, both during in vitro and in vivo infection. Since cell–cell fusion may allow efficient spread to neighboring cells without exposure to neutralizing antibodies and other host immune factors, viral-induced syncytia may be important for viral dissemination, long-term persistence, and pathogenicity. In this review, we provide an overview of the viral and cellular factors and mechanisms identified so far in the process of cell–cell fusion induced by betaherpesviruses and discuss the possible consequences for cellular dysfunction and pathogenesis.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1437
Author(s):  
Kanokporn Sornsuwan ◽  
Weeraya Thongkhum ◽  
Thanathat Pamonsupornwichit ◽  
Tanawan Samleerat Carraway ◽  
Suthinee Soponpong ◽  
...  

Previously, a designed ankyrin repeat protein, AnkGAG1D4, was generated for intracellular targeting of the HIV-1 capsid domain. The efficiency was satisfactory in interfering with the HIV assembly process. Consequently, improved AnkGAG1D4 binding affinity was introduced by substituting tyrosine (Y) for serine (S) at position 45. However, the intracellular anti-HIV-1 activity of AnkGAG1D4-S45Y has not yet been validated. In this study, the performance of AnkGAG1D4 and AnkGAG1D4-S45Y in inhibiting wild-type HIV-1 and HIV-1 maturation inhibitor-resistant replication in SupT1 cells was evaluated. HIV-1 p24 and viral load assays were used to verify the biological activity of AnkGAG1D4 and AnkGAG1D4-S45Y as assembly inhibitors. In addition, retardation of syncytium formation in infected SupT1 cells was observed. Of note, the defense mechanism of both ankyrins did not induce the mutation of target amino acids in the capsid domain. The present data show that the potency of AnkGAG1D4-S45Y was superior to AnkGAG1D4 in interrupting either HIV-1 wild-type or the HIV maturation inhibitor-resistant strain.


2021 ◽  
Vol 8 (1) ◽  
pp. 515-536
Author(s):  
Yuta Kanai ◽  
Takeshi Kobayashi

Reverse genetics systems for viruses, the technology used to generate gene-engineered recombinant viruses from artificial genes, enable the study of the roles of the individual nucleotides and amino acids of viral genes and proteins in infectivity, replication, and pathogenicity. The successful development of a reverse genetics system for poliovirus in 1981 accelerated the establishment of protocols for other RNA viruses important for human health. Despite multiple efforts, rotavirus (RV), which causes severe gastroenteritis in infants, was refractory to reverse genetics analysis, and the first complete reverse genetics system for RV was established in 2017. This novel technique involves use of the fusogenic protein FAST (fusion-associated small transmembrane) derived from the bat-borne Nelson Bay orthoreovirus, which induces massive syncytium formation. Co-transfection of a FAST-expressing plasmid with complementary DNAs encoding RV genes enables rescue of recombinant RV. This review focuses on methodological insights into the reverse genetics system for RV and discusses applications and potential improvements to this system.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1755
Author(s):  
Amandine Gamble ◽  
Yao Yu Yeo ◽  
Aubrey A. Butler ◽  
Hubert Tang ◽  
Celine E. Snedden ◽  
...  

Syncytium formation, i.e., cell–cell fusion resulting in the formation of multinucleated cells, is a hallmark of infection by paramyxoviruses and other pathogenic viruses. This natural mechanism has historically been a diagnostic marker for paramyxovirus infection in vivo and is now widely used for the study of virus-induced membrane fusion in vitro. However, the role of syncytium formation in within-host dissemination and pathogenicity of viruses remains poorly understood. The diversity of henipaviruses and their wide host range and tissue tropism make them particularly appropriate models with which to characterize the drivers of syncytium formation and the implications for virus fitness and pathogenicity. Based on the henipavirus literature, we summarized current knowledge on the mechanisms driving syncytium formation, mostly acquired from in vitro studies, and on the in vivo distribution of syncytia. While these data suggest that syncytium formation widely occurs across henipaviruses, hosts, and tissues, we identified important data gaps that undermined our understanding of the role of syncytium formation in virus pathogenesis. Based on these observations, we propose solutions of varying complexity to fill these data gaps, from better practices in data archiving and publication for in vivo studies, to experimental approaches in vitro.


2021 ◽  
Author(s):  
Parisa Kakanj ◽  
Sourabh Bhide ◽  
Bernard Moussian ◽  
Maria Leptin

Epithelial wound healing in Drosophila involves the formation of multinucleate cells surrounding the wound. We show that autophagy, a cellular degradation process often deployed in stress responses, is required for the formation of a multinucleated syncytium during wound healing. In addition, uncontrolled autophagy in the unwounded epidermis leads to the degradation of endo-membranes and the lateral plasma membrane, while the apical and basal membranes and the epithelial barrier function remain intact. Proper functioning of TORC1 is needed to prevent autophagy from destroying the larval epidermis, which depends on membrane isolation and phagophore expansion, but does not require the fusion of autophagosomes to lysosomes. Our findings reveal a function for TORC1-mediated regulation of autophagy in maintaining membrane integrity and homeostasis in the epidermis and during wound healing. Finally, autophagy can counteract experimentally induced nuclear defects resembling laminopathies.


mBio ◽  
2021 ◽  
Author(s):  
Ya-Wen Cheng ◽  
Tai-Ling Chao ◽  
Chiao-Ling Li ◽  
Sheng-Han Wang ◽  
Han-Chieh Kao ◽  
...  

Analysis of viral genomes and monitoring of the evolutionary trajectory of SARS-CoV-2 over time has identified the D614G substitution in spike (S) as the most prevalent expanding variant worldwide, which might confer a selective advantage in transmission. Several studies showed that the D614G variant replicates and transmits more efficiently than the wild-type virus, but the mechanism is unclear.


Author(s):  
Amandine Gamble ◽  
Yao Yu Yeo ◽  
Aubrey Butler ◽  
Hubert Tang ◽  
Celine Snedden ◽  
...  

Syncytium formation, i.e., cell-cell fusion resulting in the formation of multinucleated cells, is a hallmark of infection by paramyxoviruses and other important viruses. This natural mechanism has historically been a diagnostic marker for paramyxovirus infection in vivo and is now widely studied for virus-induced membrane fusion in vitro. However, the role of syncytium formation in within-host dissemination and pathogenicity of viruses remains poorly understood. The diversity of henipaviruses and their wide host range and tissue tropism make them particularly appropriate models to characterize the drivers of syncytium formation and its implications for virus fitness and pathogenicity. Based on the henipavirus literature, we summarized current knowledge on the mechanisms driving syncytium formation, mostly acquired from in vitro studies, and on the in vivo distribution of syncytia. While these data suggest that syncytium formation widely occurs across henipaviruses, hosts and tissues, we identified important data gaps that undermined our understanding of the role of syncytium formation in virus pathogenesis. Based on these observations, we propose solutions of varying complexity to fill these data gaps, from better practices in data archiving and publication for in vivo studies, to experimental approaches in vitro.


Sign in / Sign up

Export Citation Format

Share Document