scholarly journals Spatio-temporal dynamics of landscape use by the bumblebee Bombus pauloensis (Hymenoptera: Apidae) and its relationship with pollen provisioning

PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0216190
Author(s):  
Pablo Cavigliasso ◽  
Colin C. Phifer ◽  
Erika M. Adams ◽  
David Flaspohler ◽  
Gerardo P. Gennari ◽  
...  
2020 ◽  
Vol 637 ◽  
pp. 117-140 ◽  
Author(s):  
DW McGowan ◽  
ED Goldstein ◽  
ML Arimitsu ◽  
AL Deary ◽  
O Ormseth ◽  
...  

Pacific capelin Mallotus catervarius are planktivorous small pelagic fish that serve an intermediate trophic role in marine food webs. Due to the lack of a directed fishery or monitoring of capelin in the Northeast Pacific, limited information is available on their distribution and abundance, and how spatio-temporal fluctuations in capelin density affect their availability as prey. To provide information on life history, spatial patterns, and population dynamics of capelin in the Gulf of Alaska (GOA), we modeled distributions of spawning habitat and larval dispersal, and synthesized spatially indexed data from multiple independent sources from 1996 to 2016. Potential capelin spawning areas were broadly distributed across the GOA. Models of larval drift show the GOA’s advective circulation patterns disperse capelin larvae over the continental shelf and upper slope, indicating potential connections between spawning areas and observed offshore distributions that are influenced by the location and timing of spawning. Spatial overlap in composite distributions of larval and age-1+ fish was used to identify core areas where capelin consistently occur and concentrate. Capelin primarily occupy shelf waters near the Kodiak Archipelago, and are patchily distributed across the GOA shelf and inshore waters. Interannual variations in abundance along with spatio-temporal differences in density indicate that the availability of capelin to predators and monitoring surveys is highly variable in the GOA. We demonstrate that the limitations of individual data series can be compensated for by integrating multiple data sources to monitor fluctuations in distributions and abundance trends of an ecologically important species across a large marine ecosystem.


Ecohydrology ◽  
2021 ◽  
Author(s):  
Qiongfang Li ◽  
Yuting Zhu ◽  
Qihui Chen ◽  
Yu Li ◽  
Jing Chen ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 4926
Author(s):  
Nguyen Duc Luong ◽  
Nguyen Hoang Hiep ◽  
Thi Hieu Bui

The increasing serious droughts recently might have significant impacts on socioeconomic development in the Red River basin (RRB). This study applied the variable infiltration capacity (VIC) model to investigate spatio-temporal dynamics of soil moisture in the northeast, northwest, and Red River Delta (RRD) regions of the RRB part belongs to territory of Vietnam. The soil moisture dataset simulated for 10 years (2005–2014) was utilized to establish the soil moisture anomaly percentage index (SMAPI) for assessing intensity of agricultural drought. Soil moisture appeared to co-vary with precipitation, air temperature, evapotranspiration, and various features of land cover, topography, and soil type in three regions of the RRB. SMAPI analysis revealed that more areas in the northeast experienced severe droughts compared to those in other regions, especially in the dry season and transitional months. Meanwhile, the northwest mainly suffered from mild drought and a slightly wet condition during the dry season. Different from that, the RRD mainly had moderately to very wet conditions throughout the year. The areas of both agricultural and forested lands associated with severe drought in the dry season were larger than those in the wet season. Generally, VIC-based soil moisture approach offered a feasible solution for improving soil moisture and agricultural drought monitoring capabilities at the regional scale.


Author(s):  
D. Nikitin ◽  
I. Omelchenko ◽  
A. Zakharova ◽  
M. Avetyan ◽  
A. L. Fradkov ◽  
...  

We study the spatio-temporal dynamics of a multiplex network of delay-coupled FitzHugh–Nagumo oscillators with non-local and fractal connectivities. Apart from chimera states, a new regime of coexistence of slow and fast oscillations is found. An analytical explanation for the emergence of such coexisting partial synchronization patterns is given. Furthermore, we propose a control scheme for the number of fast and slow neurons in each layer. This article is part of the theme issue ‘Nonlinear dynamics of delay systems’.


2015 ◽  
Vol 282 (1806) ◽  
pp. 20150173 ◽  
Author(s):  
Ayco J. M. Tack ◽  
Tommi Mononen ◽  
Ilkka Hanski

Climate change is known to shift species' geographical ranges, phenologies and abundances, but less is known about other population dynamic consequences. Here, we analyse spatio-temporal dynamics of the Glanville fritillary butterfly ( Melitaea cinxia ) in a network of 4000 dry meadows during 21 years. The results demonstrate two strong, related patterns: the amplitude of year-to-year fluctuations in the size of the metapopulation as a whole has increased, though there is no long-term trend in average abundance; and there is a highly significant increase in the level of spatial synchrony in population dynamics. The increased synchrony cannot be explained by increasing within-year spatial correlation in precipitation, the key environmental driver of population change, or in per capita growth rate. On the other hand, the frequency of drought during a critical life-history stage (early larval instars) has increased over the years, which is sufficient to explain the increasing amplitude and the expanding spatial synchrony in metapopulation dynamics. Increased spatial synchrony has the general effect of reducing long-term metapopulation viability even if there is no change in average metapopulation size. This study demonstrates how temporal changes in weather conditions can lead to striking changes in spatio-temporal population dynamics.


Sign in / Sign up

Export Citation Format

Share Document