scholarly journals Robustification of RosettaAntibody and Rosetta SnugDock

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0234282
Author(s):  
Jeliazko R. Jeliazkov ◽  
Rahel Frick ◽  
Jing Zhou ◽  
Jeffrey J. Gray

In recent years, the observed antibody sequence space has grown exponentially due to advances in high-throughput sequencing of immune receptors. The rise in sequences has not been mirrored by a rise in structures, as experimental structure determination techniques have remained low-throughput. Computational modeling, however, has the potential to close the sequence–structure gap. To achieve this goal, computational methods must be robust, fast, easy to use, and accurate. Here we report on the latest advances made in RosettaAntibody and Rosetta SnugDock—methods for antibody structure prediction and antibody–antigen docking. We simplified the user interface, expanded and automated the template database, generalized the kinematics of antibody–antigen docking (which enabled modeling of single-domain antibodies) and incorporated new loop modeling techniques. To evaluate the effects of our updates on modeling accuracy, we developed rigorous tests under a new scientific benchmarking framework within Rosetta. Benchmarking revealed that more structurally similar templates could be identified in the updated database and that SnugDock broadened its applicability without losing accuracy. However, there are further advances to be made, including increasing the accuracy and speed of CDR-H3 loop modeling, before computational approaches can accurately model any antibody.

2020 ◽  
Author(s):  
Jeliazko R. Jeliazkov ◽  
Rahel Frick ◽  
Jing Zhou ◽  
Jeffrey J. Gray

AbstractIn recent years, the observed antibody sequence space has grown exponentially due to advances in high-throughput sequencing of immune receptors. The rise in sequences has not been mirrored by a rise in structures, as experimental structure determination techniques have remained low-throughput. Computational modeling, however, has the potential to close the sequence–structure gap. To achieve this goal, computational methods must be robust, fast, easy to use, and accurate. Here we report on the latest advances made in RosettaAntibody and Rosetta SnugDock—methods for antibody structure prediction and antibody–antigen docking. We simplified the user interface, expanded and automated the template database, generalized the kinematics of antibody–antigen docking (which enabled modeling of single-domain antibodies) and incorporated new loop modeling techniques. To evaluate the effects of our updates on modeling accuracy, we developed rigorous tests under a new scientific benchmarking framework within Rosetta. Benchmarking revealed that more structurally similar templates could be identified in the updated database and that SnugDock broadened its applicability without losing accuracy. However, there are further advances to be made, including increasing the accuracy and speed of CDR-H3 loop modeling, before computational approaches can accurately model any antibody.


2013 ◽  
Vol 48 ◽  
pp. 953-1000 ◽  
Author(s):  
F. Campeotto ◽  
A. Dal Palù ◽  
A. Dovier ◽  
F. Fioretto ◽  
E. Pontelli

This paper proposes the formalization and implementation of a novel class of constraints aimed at modeling problems related to placement of multi-body systems in the 3-dimensional space. Each multi-body is a system composed of body elements, connected by joint relationships and constrained by geometric properties. The emphasis of this investigation is the use of multi-body systems to model native conformations of protein structures---where each body represents an entity of the protein (e.g., an amino acid, a small peptide) and the geometric constraints are related to the spatial properties of the composing atoms. The paper explores the use of the proposed class of constraints to support a variety of different structural analysis of proteins, such as loop modeling and structure prediction. The declarative nature of a constraint-based encoding provides elaboration tolerance and the ability to make use of any additional knowledge in the analysis studies. The filtering capabilities of the proposed constraints also allow to control the number of representative solutions that are withdrawn from the conformational space of the protein, by means of criteria driven by uniform distribution sampling principles. In this scenario it is possible to select the desired degree of precision and/or number of solutions. The filtering component automatically excludes configurations that violate the spatial and geometric properties of the composing multi-body system. The paper illustrates the implementation of a constraint solver based on the multi-body perspective and its empirical evaluation on protein structure analysis problems.


2018 ◽  
Author(s):  
Meghan Whitney Franklin ◽  
Joanna S.G. Slusky

I.AbstractAs a structural class, tight turns can control molecular recognition, enzymatic activity, and nucleation of folding. They have been extensively characterized in soluble proteins but have not been characterized in outer membrane proteins (OMPs), where they also support critical functions. We clustered the 4-6 residue tight turns of 110 OMPs to characterize the phi/psi angles, sequence, and hydrogen bonding of these structures. We find significant differences between reports of soluble protein tight turns and OMP tight turns. Since OMP strands are less twisted than soluble strands they favor different turn structures types. Moreover, the membrane localization of OMPs yields different sequence hallmarks for their tight turns relative to soluble protein turns. We also characterize the differences in phi/psi angles, sequence, and hydrogen bonding between OMP extracellular loops and OMP periplasmic turns. As previously noted, the extracellular loops tend to be much longer than the periplasmic turns. We find that this difference in length is due to the broader distribution of lengths of the extracellular loops not a large difference in the median length. Extracellular loops also tend to have more charged residues as predicted by the charge-out rule. Finally, in all OMP tight turns, hydrogen bonding between the sidechain and backbone two to four residues away plays an important role. These bonds preferentially use an Asp, Asn, Ser or Thr residue in a beta or pro phi/psi conformation. We anticipate that this study will be applicable to future design and structure prediction of OMPs.


2019 ◽  
Vol 35 (17) ◽  
pp. 3013-3019 ◽  
Author(s):  
José Ramón López-Blanco ◽  
Pablo Chacón

Abstract Motivation Knowledge-based statistical potentials constitute a simpler and easier alternative to physics-based potentials in many applications, including folding, docking and protein modeling. Here, to improve the effectiveness of the current approximations, we attempt to capture the six-dimensional nature of residue–residue interactions from known protein structures using a simple backbone-based representation. Results We have developed KORP, a knowledge-based pairwise potential for proteins that depends on the relative position and orientation between residues. Using a minimalist representation of only three backbone atoms per residue, KORP utilizes a six-dimensional joint probability distribution to outperform state-of-the-art statistical potentials for native structure recognition and best model selection in recent critical assessment of protein structure prediction and loop-modeling benchmarks. Compared with the existing methods, our side-chain independent potential has a lower complexity and better efficiency. The superior accuracy and robustness of KORP represent a promising advance for protein modeling and refinement applications that require a fast but highly discriminative energy function. Availability and implementation http://chaconlab.org/modeling/korp. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (11) ◽  
pp. 3385-3392
Author(s):  
Zi-Lin Liu ◽  
Jing-Hao Hu ◽  
Fan Jiang ◽  
Yun-Dong Wu

Abstract Motivation High-throughput sequencing discovers many naturally occurring disulfide-rich peptides or cystine-rich peptides (CRPs) with diversified bioactivities. However, their structure information, which is very important to peptide drug discovery, is still very limited. Results We have developed a CRP-specific structure prediction method called Cystine-Rich peptide Structure Prediction (CRiSP), based on a customized template database with cystine-specific sequence alignment and three machine-learning predictors. The modeling accuracy is significantly better than several popular general-purpose structure modeling methods, and our CRiSP can provide useful model quality estimations. Availability and implementation The CRiSP server is freely available on the website at http://wulab.com.cn/CRISP. Contact [email protected] or [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Author(s):  
Jianfu Zhou ◽  
Alexandra E. Panaitiu ◽  
Gevorg Grigoryan

AbstractThe ability to routinely design functional proteins, in a targeted manner, would have enormous implications for biomedical research and therapeutic development. Computational protein design (CPD) offers the potential to fulfill this need, and though recent years have brought considerable progress in the field, major limitations remain. Current state-of-the-art approaches to CPD aim to capture the determinants of structure from physical principles. While this has led to many successful designs, it does have strong limitations associated with inaccuracies in physical modeling, such that a robust general solution to CPD has yet to be found. Here we propose a fundamentally novel design framework—one based on identifying and applying patterns of sequence-structure compatibility found in known proteins, rather than approximating them from models of inter-atomic interactions. Specifically, we systematically decompose the target structure to be designed into structural building blocks we call TERMs (tertiary motifs) and use rapid structure search against the Protein Data Bank (PDB) to identify sequence patterns associated with each TERM from known protein structures that contain it. These results are then combined to produce a sequence-level pseudo-energy model that can score any sequence for compatibility with the target structure. This model can then be used to extract the optimal-scoring sequence via combinatorial optimization or otherwise sample the sequence space predicted to be well compatible with folding to the target. Here we carry out extensive computational analyses, showing that our method, which we dub dTERMen (design with TERM energies): 1) produces native-like sequences given native crystallographic or NMR backbones, 2) produces sequence-structure compatibility scores that correlate with thermodynamic stability, and 3) is able to predict experimental success of designed sequences generated with other methods, and 4) designs sequences that are found to fold to the desired target by structure prediction more frequently than sequences designed with an atomistic method. As an experimental validation of dTERMen, we perform a total surface redesign of Red Fluorescent Protein mCherry, marking a total of 64 residues as variable. The single sequence identified as optimal by dTERMen harbors 48 mutations relative to mCherry, but nevertheless folds, is monomeric in solution, exhibits similar stability to chemical denaturation as mCherry, and even preserves the fluorescence property. Our results strongly argue that the PDB is now sufficiently large to enable proteins to be designed by using only examples of structural motifs from unrelated proteins. This is highly significant, given that the structural database will only continue to grow, and signals the possibility of a whole host of novel data-driven CPD methods. Because such methods are likely to have orthogonal strengths relative to existing techniques, they could represent an important step towards removing remaining barriers to robust CPD.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9586
Author(s):  
László Fülöp ◽  
János Ecker

Recycling biomass is indispensable these days not only because fossil energy sources are gradually depleted, but also because pollution of the environment, caused by the increasing use of energy, must be reduced. This article intends to overview the results of plant biomass processing methods that are currently in use. Our aim was also to review published methods that are not currently in use. It is intended to explore the possibilities of new methods and enzymes to be used in biomass recycling. The results of this overview are perplexing in almost every area. Advances have been made in the pre-treatment of biomass and in the diversity and applications of the enzymes utilized. Based on molecular modeling, very little progress has been made in the modification of existing enzymes for altered function and adaptation for the environmental conditions during the processing of biomass. There are hardly any publications in which molecular modeling techniques are used to improve enzyme function and to adapt enzymes to various environmental conditions. Our view is that using modern computational, biochemical, and biotechnological methods would enable the purposeful design of enzymes that are more efficient and suitable for biomass processing.


2021 ◽  
Vol 7 ◽  
Author(s):  
Arun S. Konagurthu ◽  
Ramanan Subramanian ◽  
Lloyd Allison ◽  
David Abramson ◽  
Peter J. Stuckey ◽  
...  

What is the architectural “basis set” of the observed universe of protein structures? Using information-theoretic inference, we answer this question with a dictionary of 1,493 substructures—called concepts—typically at a subdomain level, based on an unbiased subset of known protein structures. Each concept represents a topologically conserved assembly of helices and strands that make contact. Any protein structure can be dissected into instances of concepts from this dictionary. We dissected the Protein Data Bank and completely inventoried all the concept instances. This yields many insights, including correlations between concepts and catalytic activities or binding sites, useful for rational drug design; local amino-acid sequence–structure correlations, useful for ab initio structure prediction methods; and information supporting the recognition and exploration of evolutionary relationships, useful for structural studies. An interactive site, Proçodic, at http://lcb.infotech.monash.edu.au/prosodic (click), provides access to and navigation of the entire dictionary of concepts and their usages, and all associated information. This report is part of a continuing programme with the goal of elucidating fundamental principles of protein architecture, in the spirit of the work of Cyrus Chothia.


Author(s):  
Akanksha Gupta ◽  
Pallavi Mohanty ◽  
Sonika Bhatnagar

Sequence-structure deficit marks one of the critical problems in today's scenario where high-throughput sequencing has resulted in large datasets of protein sequences but their corresponding 3D structures still needs to be determined. Homology modeling, also termed as Comparative modeling refers to modeling of 3D structure of a protein by exploiting structural information from other known protein structures with good sequence similarity. Homology models contain sufficient information about the spatial arrangement of important residues in the protein and are often used in drug design for screening of large libraries by molecular docking techniques. This chapter provides a brief description about protein tertiary structure prediction and Homology modeling. The authors provide a description of the steps involved in homology modeling protocols and provide information on the various resources available for the same.


2007 ◽  
Vol 40 (1) ◽  
pp. 105-114 ◽  
Author(s):  
N. Panina ◽  
F. J. J. Leusen ◽  
F. F. B. J. Janssen ◽  
P. Verwer ◽  
H. Meekes ◽  
...  

The structures of the α, β and γ polymorphs of quinacridone (Pigment Violet 19) were predicted usingPolymorph Predictorsoftware in combination with X-ray powder diffraction patterns of limited quality. After generation and energy minimization of the possible structures, their powder patterns were compared with the experimental ones. On this basis, candidate structures for the polymorphs were chosen from the list of all structures. Rietveld refinement was used to validate the choice of structures. The predicted structure of the γ polymorph is in accordance with the experimental structure published previously. Three possible structures for the β polymorph are proposed on the basis of X-ray powder patterns comparison. It is shown that the α structure in the Cambridge Structural Database is likely to be in error, and a new α structure is proposed. The present work demonstrates a method to obtain crystal structures of industrially important pigments when only a low-quality X-ray powder diffraction pattern is available.


Sign in / Sign up

Export Citation Format

Share Document