scholarly journals Immunization by exposure to live virus (SIVmne/HIV-2287) during antiretroviral drug prophylaxis may reduce risk of subsequent viral challenge

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0240495
Author(s):  
Lisa M. Frenkel ◽  
LaRene Kuller ◽  
Ingrid A. Beck ◽  
Che-Chung Tsai ◽  
Jaimy P. Joy ◽  
...  

Rationale/Study design A major challenge in the development of HIV vaccines is finding immunogens that elicit protection against a broad range of viral strains. Immunity to a narrow range of viral strains may protect infants of HIV-infected women or partners discordant for HIV. We hypothesized that immunization to the relevant viral variants could be achieved by exposure to infectious virus during prophylaxis with antiretroviral drugs. To explore this approach in an animal model, macaques were exposed to live virus (SIVmne or HIV-2287) during prophylaxis with parenteral tenofovir and humoral and cellular immune responses were quantified. Subsequently, experimental animals were challenged with homologous virus to evaluate protection from infection, and if infection occurred, the course of disease was compared to control animals. Experimental animals uninfected with SIVmne were challenged with heterologous HIV-2287 to assess resistance to retroviral infection. Methodology/Principal findings Juvenile female Macaca nemestrina (N = 8) were given ten weekly intravaginal exposures with either moderately (SIVmne) or highly (HIV-2287) pathogenic virus during tenofovir prophylaxis. Tenofovir protected all 8 experimental animals from infection, while all untreated control animals became infected. Specific non-neutralizing antibodies were elicited in blood and vaginal secretions of experimental animals, but no ELISPOT responses were detected. Six weeks following the cessation of tenofovir, intravaginal challenge with homologous virus infected 2/4 (50%) of the SIVmne-immunized animals and 4/4 (100%) of the HIV-2287-immunized animals. The two SIVmne-infected and 3 (75%) HIV-2287-infected had attenuated disease, suggesting partial protection. Conclusions/Significance Repeated exposure to SIVmne or HIV-2287, during antiretroviral prophylaxis that blocked infection, induced binding antibodies in the blood and mucosa, but not neutralizing antibodies or specific cellular immune responses. Studies to determine whether antibodies are similarly induced in breastfeeding infants and sexual partners discordant for HIV infection and receiving pre-exposure antiretroviral prophylaxis are warranted, including whether these antibodies appear to confer partial or complete protection from infection.

2020 ◽  
Author(s):  
LM Frenkel ◽  
L Kuller ◽  
IA Beck ◽  
C-C Tsai ◽  
JP Joy ◽  
...  

AbstractRationale/Study DesignA major challenge in the development of HIV vaccines is finding immunogens that elicit protection against a broad range of viral strains. Immunity to a narrow range of viral strains may protect infants of HIV-infected women or partners discordant for HIV. We hypothesized that immunization to the relevant viral variants could be achieved by exposure to infectious virus during prophylaxis with antiretroviral drugs. To explore this approach in an animal model, macaques were exposed to live virus (SIVmne or HIV-2287) during prophylaxis with parenteral tenofovir. The humoral and cellular immune responses were quantified. Subsequently, experimental animals were challenged with homologous virus to evaluate protection from infection, and if infection occurred, the course of disease was compared to control animals. Experimental animals uninfected with SIVmne were challenged with heterologous HIV-2287 to assess resistance to retroviral infection.Methodology/Principal FindingsJuvenile Macaca nemestrina (N=8) were given ten weekly intravaginal exposures with either moderately (SIVmne) or highly (HIV-2287) pathogenic virus during tenofovir prophylaxis. Tenofovir protected all 8 experimental animals from infection, while all untreated control animals became infected. Specific non-neutralizing antibodies were elicited in blood and vaginal secretions of experimental animals, but no ELISPOT responses were detected. Six weeks following the cessation of tenofovir, intravaginal challenge with homologous virus infected 2/4 (50%) of the SIVmne-immunized animals and 4/4 (100%) of the HIV-2287-immunized animals. The two SIVmne-infected and 3 (75%) HIV-2287-infected had attenuated disease, suggesting partial protection.Conclusions/SignificanceRepeated exposure to SIVmne or HIV-2287 during antiretroviral prophylaxis blocked infection induced binding antibodies in the blood and mucosa, but not neutralizing antibodies or specific cellular immune responses. Studies to determine whether antibodies are similarly induced in breastfeeding infants and sexual partners discordant for HIV infection and receiving pre-exposure antiretroviral prophylaxis are warranted, including whether these antibodies appear to confer partial or complete protection from infection.


Vaccine ◽  
2018 ◽  
Vol 36 (22) ◽  
pp. 3090-3100 ◽  
Author(s):  
Axel T. Lehrer ◽  
Teri-Ann S. Wong ◽  
Michael M. Lieberman ◽  
Tom Humphreys ◽  
David E. Clements ◽  
...  

Vaccines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 27 ◽  
Author(s):  
Yoshiaki Yamaji ◽  
Akihito Sawada ◽  
Yosuke Yasui ◽  
Takashi Ito ◽  
Tetsuo Nakayama

We previously reported that recombinant measles virus expressing the respiratory syncytial virus (RSV) fusion protein (F), MVAIK/RSV/F, induced neutralizing antibodies against RSV, and those expressing RSV-NP (MVAIK/RSV/NP) and M2-1 (MVAIK/RSV/M2-1) induced RSV-specific CD8+/IFN-γ+ cells, but not neutralizing antibodies. In the present study, MVAIK/RSV/F and MVAIK/RSV/NP were simultaneously administered to cotton rats and immune responses and protective effects were compared with MVAIK/RSV/F alone. Sufficient neutralizing antibodies against RSV and RSV-specific CD8+/IFN-γ+ cells were observed after re-immunization with simultaneous administration. After the RSV challenge, CD8+/IFN-γ+ increased in spleen cells obtained from the simultaneous immunization group in response to F and NP peptides. Higher numbers of CD8+/IFN-γ+ and CD4+/IFN-γ+ cells were detected in lung tissues from the simultaneous immunization group after the RSV challenge. No detectable RSV was recovered from lung homogenates in the immunized groups. Mild inflammatory reactions with the thickening of broncho-epithelial cells and the infiltration of inflammatory cells were observed in lung tissues obtained from cotton rats immunized with MVAIK/RSV/F alone after the RSV challenge. No inflammatory responses were observed after the RSV challenge in the simultaneous immunization groups. The present results indicate that combined administration with MVAIK/RSV/F and MVAIK/RSV/NP induces humoral and cellular immune responses and shows effective protection against RSV, suggesting the importance of cellular immunity.


Author(s):  
Neil Goldstein ◽  
Viki Bockstal ◽  
Stephan Bart ◽  
Kerstin Luhn ◽  
Cynthia Robinson ◽  
...  

Abstract Background This phase 1 placebo-controlled study assessed the safety and immunogenicity of 2-dose regimens of Ad26.ZEBOV (adenovirus serotype 26 [Ad26]) and MVA-BN-Filo (modified vaccinia Ankara [MVA]) vaccines with booster vaccination at day 360. Methods Healthy US adults (N = 164) randomized into 10 groups received saline placebo or standard or high doses of Ad26 or MVA in 2-dose regimens at 7-, 14-, 28-, or 56-day intervals; 8 groups received booster Ad26 or MVA vaccinations on day 360. Participants reported solicited and unsolicited reactogenicity; we measured immunoglobulin G binding, neutralizing antibodies and cellular immune responses to Ebola virus glycoprotein. Results All regimens were well tolerated with no serious vaccine-related adverse events. Heterologous (Ad26,MVA [dose 1, dose 2] or MVA,Ad26) and homologous (Ad26,Ad26) regimens induced humoral and cellular immune responses 21 days after dose 2; responses were higher after heterologous regimens. Booster vaccination elicited anamnestic responses in all participants. Conclusions Both heterologous and homologous Ad26,MVA Ebola vaccine regimens are well tolerated in healthy adults, regardless of interval or dose level. Heterologous 2-dose Ad26,MVA regimens containing an Ebola virus insert induce strong, durable humoral and cellular immune responses. Immunological memory was rapidly recalled by booster vaccination, suggesting that Ad26 booster doses could be considered for individuals at risk of Ebola infection, who previously received the 2-dose regimen.


1975 ◽  
Vol 24 (2) ◽  
pp. 59-63
Author(s):  
SHOICHIRO IRIMAJIRI ◽  
SATOSHI KOMEJI ◽  
MASAKO HARA ◽  
HIDEKI TAKAHASHI ◽  
TOHRU ABE

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ebrahim Kord ◽  
Farzin Roohvand ◽  
Jean Dubuisson ◽  
Thibaut Vausselin ◽  
Hosein Nasr Azadani ◽  
...  

Abstract Background Despite recent advancements, limitations in the treatment and control of hepatitis C virus (HCV) infection reprioritized the studies for invention of an efficient HCV vaccine to elicit strong neutralizing antibodies (NAbs) and cellular responses. Methods Herein, we report molecular construction of a BacMam virus-based surface display for a subtype-1a HCV gpE2 (Bac-CMV-E2-gp64; Bac) that both expressed and displayed gpE2 in mammalian cells and bacouloviral envelope, respectively. Results Assessments by western blotting, Immunofluorescence and Immunogold-electron microscopy indicated the proper expression and incorporation in insect cell and baculovirus envelope, respectively. Mice immunized in three different prime-boost immunization groups of: Bac/Bac, Bac/Pro (bacoulovirus-derived gpE2) and Bac/DNA (plasmid DNA (pCDNA)-encoding gpE2) developed high levels of IgG and IFN-γ (highest for Bac/Bac group) indicating the induction of both humeral and cellular immune responses. Calculation of the IgG2a/IgG1 and IFN-γ/IL-4 ratios indicated a Th1 polarization of immune responses in the Bac/Bac and Bac/DNA groups but a balanced Th1-Th2 phenotype in the Bac/Pro group. Sera of the mice in the Bac/Bac group provided the highest percentage of cross-NAbs against a subtype-2a HCVcc (JFH1) compared to Bac/Pro and Bac/DNA groups (62% versus 41% and 6%). Conclusions Results indicated that BacMam virus-based surface display for gpE2 might act as both subunit and DNA vaccine and offers a promising strategy for development of HCV vaccine for concurrent induction of strong humoral and cellular immune responses.


2021 ◽  
Author(s):  
Neeltje van Doremalen ◽  
Robert Fischer ◽  
Jonathan Schulz ◽  
Myndi Holbrook ◽  
Brian Smith ◽  
...  

Many different vaccine candidates against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiological agent of COVID-19, are currently approved and under development. Vaccine platforms vary from mRNA vaccines to viral-vectored vaccines, and several candidates have been shown to produce humoral and cellular responses in small animal models, non-human primates and human volunteers. In this study, six non-human primates received a prime-boost intramuscular vaccination with 4 μg of mRNA vaccine candidate CV07050101, which encodes a pre-fusion stabilized spike (S) protein of SARS-CoV-2. Boost vaccination was performed 28 days post prime vaccination. As a control, six animals were similarly injected with PBS. Humoral and cellular immune responses were investigated at time of vaccination, and two weeks afterwards. No antibodies could be detected two and four weeks after prime vaccination. Two weeks after boost vaccination, binding but no neutralizing antibodies were detected in 4 out of 6 non-human primates. SARS-CoV-2 S protein specific T cell responses were detected in these 4 animals. In conclusion, prime-boost vaccination with 4 μg of vaccine candidate CV07050101 resulted in limited immune responses in 4 out of 6 non-human primates.


Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 852
Author(s):  
Khalid A. Alluhaybi ◽  
Rahaf H. Alharbi ◽  
Rowa Y. Alhabbab ◽  
Najwa D. Aljehani ◽  
Sawsan S. Alamri ◽  
...  

The urgent need for effective, safe and equitably accessible vaccines to tackle the ongoing spread of COVID-19 led researchers to generate vaccine candidates targeting varieties of immunogens of SARS-CoV-2. Because of its crucial role in mediating binding and entry to host cell and its proven safety profile, the subunit 1 (S1) of the spike protein represents an attractive immunogen for vaccine development. Here, we developed and assessed the immunogenicity of a DNA vaccine encoding the SARS-CoV-2 S1. Following in vitro confirmation and characterization, the humoral and cellular immune responses of our vaccine candidate (pVAX-S1) was evaluated in BALB/c mice using two different doses, 25 µg and 50 µg. Our data showed high levels of SARS-CoV-2 specific IgG and neutralizing antibodies in mice immunized with three doses of pVAX-S1. Analysis of the induced IgG subclasses showed a Th1-polarized immune response, as demonstrated by the significant elevation of spike-specific IgG2a and IgG2b, compared to IgG1. Furthermore, we found that the immunization of mice with three doses of 50 µg of pVAX-S1 could elicit significant memory CD4+ and CD8+ T cell responses. Taken together, our data indicate that pVAX-S1 is immunogenic and safe in mice and is worthy of further preclinical and clinical evaluation.


Sign in / Sign up

Export Citation Format

Share Document