Background: Homologous and heterologous SARS-CoV-2-vaccinations yield different spike protein-directed humoral and cellular immune responses. However, their interdependencies remain elusive.
Methods: COV-ADAPT is a prospective, observational cohort study of 417 healthcare workers who received homologous vaccination with Astra (ChAdOx1-S; AstraZeneca) or BNT (BNT162b2; Biontech/Pfizer) or heterologous vaccination with Astra/BNT. We assessed the humoral (anti-spike-RBD-IgG, neutralizing antibodies, antibody avidity) and cellular (spike-induced T cell interferon-y release) immune response in blood samples up to 2 weeks before (T1) and 2 to 12 weeks following secondary immunization (T2).
Findings: Initial vaccination with Astra resulted in lower anti-spike-RBD-IgG responses compared to BNT (70+/-114 vs. 226+/-279 BAU/ml, p<0.01) at T1, whereas T cell activation did not differ significantly. Booster vaccination with BNT proved superior to Astra at T2 (anti-spike-RBD-IgG: Astra/BNT 2387+/-1627 and BNT/BNT 3202+/-2184 vs. Astra/Astra 413+/-461 BAU/ml, both p<0.001; spike-induced T cell interferon-y; release: Astra/BNT 5069+/-6733 and BNT/BNT 4880+/-7570 vs. Astra/Astra 1152+/-2243 mIU/ml, both p<0.001). No significant differences were detected between BNT-boostered groups at T2. For Astra, we observed no booster effect on T cell activation. We found associations between anti-spike-RBD-IgG levels (Astra/BNT and BNT/BNT) and T cell responses (Astra/Astra and Astra/BNT) from T1 to T2. There were also links between levels of anti-spike-RBD-IgG and T cell at both time points (all groups combined). All regimes yielded neutralizing antibodies and increased antibody avidity at T2.
Interpretation: Interdependencies between humoral and cellular immune responses differ between common SARS-CoV-2 vaccination regimes. T cell activation is unlikely to compensate for poor humoral responses.
Funding: Deutsche Forschungsgemeinschaft (DFG), ER723/3-1