scholarly journals SE-stacking: Improving user purchase behavior prediction by information fusion and ensemble learning

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242629
Author(s):  
Jing Xu ◽  
Jie Wang ◽  
Ye Tian ◽  
Jiangpeng Yan ◽  
Xiu Li ◽  
...  

Online shopping behavior has the characteristics of rich granularity dimension and data sparsity and presents a challenging task in e-commerce. Previous studies on user behavior prediction did not seriously discuss feature selection and ensemble design, which are important to improving the performance of machine learning algorithms. In this paper, we proposed an SE-stacking model based on information fusion and ensemble learning for user purchase behavior prediction. After successfully using the ensemble feature selection method to screen purchase-related factors, we used the stacking algorithm for user purchase behavior prediction. In our efforts to avoid the deviation of the prediction results, we optimized the model by selecting ten different types of models as base learners and modifying the relevant parameters specifically for them. Experiments conducted on a publicly available dataset show that the SE-stacking model can achieve a 98.40% F1 score, approximately 0.09% higher than the optimal base models. The SE-stacking model not only has a good application in the prediction of user purchase behavior but also has practical value when combined with the actual e-commerce scene. At the same time, this model has important significance in academic research and the development of this field.

Author(s):  
Fatemeh Alighardashi ◽  
Mohammad Ali Zare Chahooki

Improving the software product quality before releasing by periodic tests is one of the most expensive activities in software projects. Due to limited resources to modules test in software projects, it is important to identify fault-prone modules and use the test sources for fault prediction in these modules. Software fault predictors based on machine learning algorithms, are effective tools for identifying fault-prone modules. Extensive studies are being done in this field to find the connection between features of software modules, and their fault-prone. Some of features in predictive algorithms are ineffective and reduce the accuracy of prediction process. So, feature selection methods to increase performance of prediction models in fault-prone modules are widely used. In this study, we proposed a feature selection method for effective selection of features, by using combination of filter feature selection methods. In the proposed filter method, the combination of several filter feature selection methods presented as fused weighed filter method. Then, the proposed method caused convergence rate of feature selection as well as the accuracy improvement. The obtained results on NASA and PROMISE with ten datasets, indicates the effectiveness of proposed method in improvement of accuracy and convergence of software fault prediction.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Alireza Osareh ◽  
Bita Shadgar

The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qi Wan ◽  
Jiaxuan Zhou ◽  
Xiaoying Xia ◽  
Jianfeng Hu ◽  
Peng Wang ◽  
...  

ObjectiveTo evaluate the performance of 2D and 3D radiomics features with different machine learning approaches to classify SPLs based on magnetic resonance(MR) T2 weighted imaging (T2WI).Material and MethodsA total of 132 patients with pathologically confirmed SPLs were examined and randomly divided into training (n = 92) and test datasets (n = 40). A total of 1692 3D and 1231 2D radiomics features per patient were extracted. Both radiomics features and clinical data were evaluated. A total of 1260 classification models, comprising 3 normalization methods, 2 dimension reduction algorithms, 3 feature selection methods, and 10 classifiers with 7 different feature numbers (confined to 3–9), were compared. The ten-fold cross-validation on the training dataset was applied to choose the candidate final model. The area under the receiver operating characteristic curve (AUC), precision-recall plot, and Matthews Correlation Coefficient were used to evaluate the performance of machine learning approaches.ResultsThe 3D features were significantly superior to 2D features, showing much more machine learning combinations with AUC greater than 0.7 in both validation and test groups (129 vs. 11). The feature selection method Analysis of Variance(ANOVA), Recursive Feature Elimination(RFE) and the classifier Logistic Regression(LR), Linear Discriminant Analysis(LDA), Support Vector Machine(SVM), Gaussian Process(GP) had relatively better performance. The best performance of 3D radiomics features in the test dataset (AUC = 0.824, AUC-PR = 0.927, MCC = 0.514) was higher than that of 2D features (AUC = 0.740, AUC-PR = 0.846, MCC = 0.404). The joint 3D and 2D features (AUC=0.813, AUC-PR = 0.926, MCC = 0.563) showed similar results as 3D features. Incorporating clinical features with 3D and 2D radiomics features slightly improved the AUC to 0.836 (AUC-PR = 0.918, MCC = 0.620) and 0.780 (AUC-PR = 0.900, MCC = 0.574), respectively.ConclusionsAfter algorithm optimization, 2D feature-based radiomics models yield favorable results in differentiating malignant and benign SPLs, but 3D features are still preferred because of the availability of more machine learning algorithmic combinations with better performance. Feature selection methods ANOVA and RFE, and classifier LR, LDA, SVM and GP are more likely to demonstrate better diagnostic performance for 3D features in the current study.


As the new technologies are emerging, data is getting generated in larger volumes high dimensions. The high dimensionality of data may rise to great challenge while classification. The presence of redundant features and noisy data degrades the performance of the model. So, it is necessary to extract the relevant features from given data set. Feature extraction is an important step in many machine learning algorithms. Many researchers have been attempted to extract the features. Among these different feature extraction methods, mutual information is widely used feature selection method because of its good quality of quantifying dependency among the features in classification problems. To cope with this issue, in this paper we proposed simplified mutual information based feature selection with less computational overhead. The selected feature subset is experimented with multilayered perceptron on KDD CUP 99 data set with 2- class classification, 5-class classification and 4-class classification. The accuracy is of these models almost similar with less number of features.


2021 ◽  
Author(s):  
Ravi Arkalgud ◽  
◽  
Andrew McDonald ◽  
Ross Brackenridge ◽  
◽  
...  

Automation is becoming an integral part of our daily lives as technology and techniques rapidly develop. Many automation workflows are now routinely being applied within the geoscience domain. The basic structure of automation and its success of modelling fundamentally hinges on the appropriate choice of parameters and speed of processing. The entire process demands that the data being fed into any machine learning model is essentially of good quality. The technological advances in well logging technology over decades have enabled the collection of vast amounts of data across wells and fields. This poses a major issue in automating petrophysical workflows. It necessitates to ensure that, the data being fed is appropriate and fit for purpose. The selection of features (logging curves) and parameters for machine learning algorithms has therefore become a topic at the forefront of related research. Inappropriate feature selections can lead erroneous results, reduced precision and have proved to be computationally expensive. Experienced Eye (EE) is a novel methodology, derived from Domain Transfer Analysis (DTA), which seeks to identify and elicit the optimum input curves for modelling. During the EE solution process, relationships between the input variables and target variables are developed, based on characteristics and attributes of the inputs instead of statistical averages. The relationships so developed between variables can then be ranked appropriately and selected for modelling process. This paper focuses on three distinct petrophysical data scenarios where inputs are ranked prior to modelling: prediction of continuous permeability from discrete core measurements, porosity from multiple logging measurements and finally the prediction of key geomechanical properties. Each input curve is ranked against a target feature. For each case study, the best ranked features were carried forward to the modelling stage, and the results are validated alongside conventional interpretation methods. Ranked features were also compared between different machine learning algorithms: DTA, Neural Networks and Multiple Linear Regression. Results are compared with the available data for various case studies. The use of the new feature selection has been proven to improve accuracy and precision of prediction results from multiple modelling algorithms.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2813
Author(s):  
Jaehyeong Lee ◽  
Hyuk Jang ◽  
Sungmin Ha ◽  
Yourim Yoon

Since the discovery that machine learning can be used to effectively detect Android malware, many studies on machine learning-based malware detection techniques have been conducted. Several methods based on feature selection, particularly genetic algorithms, have been proposed to increase the performance and reduce costs. However, because they have yet to be compared with other methods and their many features have not been sufficiently verified, such methods have certain limitations. This study investigates whether genetic algorithm-based feature selection helps Android malware detection. We applied nine machine learning algorithms with genetic algorithm-based feature selection for 1104 static features through 5000 benign applications and 2500 malwares included in the Andro-AutoPsy dataset. Comparative experimental results show that the genetic algorithm performed better than the information gain-based method, which is generally used as a feature selection method. Moreover, machine learning using the proposed genetic algorithm-based feature selection has an absolute advantage in terms of time compared to machine learning without feature selection. The results indicate that incorporating genetic algorithms into Android malware detection is a valuable approach. Furthermore, to improve malware detection performance, it is useful to apply genetic algorithm-based feature selection to machine learning.


Author(s):  
Durmuş Özkan Şahin ◽  
Erdal Kılıç

In this study, the authors give both theoretical and experimental information about text mining, which is one of the natural language processing topics. Three different text mining problems such as news classification, sentiment analysis, and author recognition are discussed for Turkish. They aim to reduce the running time and increase the performance of machine learning algorithms. Four different machine learning algorithms and two different feature selection metrics are used to solve these text classification problems. Classification algorithms are random forest (RF), logistic regression (LR), naive bayes (NB), and sequential minimal optimization (SMO). Chi-square and information gain metrics are used as the feature selection method. The highest classification performance achieved in this study is 0.895 according to the F-measure metric. This result is obtained by using the SMO classifier and information gain metric for news classification. This study is important in terms of comparing the performances of classification algorithms and feature selection methods.


Sign in / Sign up

Export Citation Format

Share Document