filter method
Recently Published Documents


TOTAL DOCUMENTS

1111
(FIVE YEARS 300)

H-INDEX

33
(FIVE YEARS 6)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Sean Randall ◽  
Helen Wichmann ◽  
Adrian Brown ◽  
James Boyd ◽  
Tom Eitelhuber ◽  
...  

Abstract Background Privacy preserving record linkage (PPRL) methods using Bloom filters have shown promise for use in operational linkage settings. However real-world evaluations are required to confirm their suitability in practice. Methods An extract of records from the Western Australian (WA) Hospital Morbidity Data Collection 2011–2015 and WA Death Registrations 2011–2015 were encoded to Bloom filters, and then linked using privacy-preserving methods. Results were compared to a traditional, un-encoded linkage of the same datasets using the same blocking criteria to enable direct investigation of the comparison step. The encoded linkage was carried out in a blinded setting, where there was no access to un-encoded data or a ‘truth set’. Results The PPRL method using Bloom filters provided similar linkage quality to the traditional un-encoded linkage, with 99.3% of ‘groupings’ identical between privacy preserving and clear-text linkage. Conclusion The Bloom filter method appears suitable for use in situations where clear-text identifiers cannot be provided for linkage.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Li Yang ◽  
Haote Ruan ◽  
Yunhan Zhang

In recent years, many low-orbit satellites have been widely used in the field of scientific research and national defense in China. In order to meet the demand of high-precision satellite orbit in China’s space, surveying and mapping, and other related fields, navigation satellites are of great significance. The UKF (unscented Kalman filter) method is applied to space targets’ spaceborne GPS autonomous orbit determination. In this paper, the UKF algorithm based on UT transformation is mainly introduced. In view of the situation that the system noise variance matrix is unknown or the dynamic model is not accurate, an adaptive UKF filtering algorithm is proposed. Simulation experiments are carried out with CHAMP satellite GPS data, and the results show that the filtering accuracy and stability are improved, which proves the algorithm’s effectiveness. The experimental results show that the Helmert variance component estimation considering the dynamics model can solve the problem of reasonable weight determination of BDS/GPS observations and effectively weaken the influence of coarse error and improve the accuracy of orbit determination. The accuracy of autonomous orbit determination by spaceborne BDS/GPS is 1.19 m and 2.35 mm/s, respectively.


2022 ◽  
Vol 130 (3) ◽  
pp. 1719-1735
Author(s):  
Jianghui Zhu ◽  
Xiaotong Chang ◽  
Xueli Zhang ◽  
Yutai Su ◽  
Xu Long

2022 ◽  
Vol 12 (1) ◽  
pp. 0-0

This study presents an intelligent information retrieval system that will effectively extract useful information from breast cancer datasets and utilized that information to build a classification model. The proposed model will reduce the missed cancer rate by providing a comprehensive decision support to the radiologist. The model is built on two datasets, Wisconsin Breast Cancer Dataset (WBCD) and 365 free text mammography reports from a hospital. Effective pre-processing techniques including filling missing values with regression, an effective Natural Language Processing (NLP) Parser is developed to handle free text mammography reports, balancing the dataset with Synthetic Minority Oversampling (SMOTE) was applied to prepare the dataset for learning. Most relevant features were selected with the help of filter method and tf-idf scores. K-NN and SGD classifiers are optimized with optimum value of k for K-NN and hyper tuning the SGD parameters with grid search technique.


2021 ◽  
Vol 11 (4) ◽  
pp. 188-194
Author(s):  
Putri Ayu Zartika ◽  
Mila Kusumawardani ◽  
Koesmarijanto Koesmarijanto

Problems that are often faced by people with physical disabilities are those who have limited hands, one of which is when they will use the computer. His inability to grip and use the mouse is often a barrier in using the computer. The purpose of the design of the tool is to provide facilities for people with disabilities to be able to use a mouse that will be moved based on head movements without noise interference caused by the MPU-6050 sensor. The results of the tests carried out show that designing a mouse with the MPU-6050 sensor has been successfully carried out, the MPU-6050 sensor by implementing a kalman filter as a noise reducer on the X axis has an accuracy value with an average error percentage of 0.09% and at Y angle is 0.12%. Data transmission from the mouse to the computer is done wirelessly using bluetooth HC-05 can receive data well as far as 12.5 meters with an error percentage of 0%. The button on the mouse that functions to perform the left click function when the button is bitten 1x, right click when the button is bitten 2x and click and hold to do a left click 2x or double click can run according to the command, has a 100% success rate.


2021 ◽  
Vol 14 (1) ◽  
pp. 126
Author(s):  
Fan Yang ◽  
Lei Liang ◽  
Changqing Wang ◽  
Zhicai Luo

The satellite gravity mission GRACE(-FO) has not yet reached its designed baseline accuracy. Previous studies demonstrated that the deficiency in the sensor system or the related signal processing might be responsible, which in turn motivates us to keep revising the sensor data processing, typically the spacecraft’s attitude. Many efforts in the past have been made to enhance the attitude modeling for GRACE, for instance, the latest release reprocesses the attitude by fusing the angular acceleration with the star camera/tracker (SC) measurements, which helps to reduce the error in Level-2 temporal gravity fields. Therefore, in addition to GRACE, revising GRACE-FO attitude determination might make sense as well. This study starts with the most original raw GRACE-FO Level-1A data including those from three SCs and one IMU (Inertial Measurement Unit) sensors, and manage to generate a new publicly available Level-1B attitude product called HUGG-01 covering from June 2018 to December 2020, using our independently-developed software. The detailed treatment of individual payload is present in this study, and an indirect Kalman filter method is introduced to fuse the multiple sensors to acquire a relatively stable and precise attitude estimation. Unlike the direct SC combination method with a predefined weight as recommended in previous work, we propose an involvement of each SC measurement in the Kalman filter to enable a dynamic weight adjustment. Intensive experiments are further carried out to assess the HUGG-01, which demonstrate that the error level of HUGG-01 is entirely within the design requirement, i.e., the resulting KBR pointing variations are well controlled within 1 mrad (pitch), 5 mrad (roll) and 1 mrad (yaw). Moreover, comparisons with the official JPL-V04 attitude product demonstrate an equivalent performance in the low-to-middle spectrum, with even a slightly lower noise level (in the high spectrum) than JPL-V04. Further analysis on KBR range-rate residuals and gravity recovery on Jan 2019 indicates that, i.e., RMS of the difference (HUGG-01 minus JPL-V04) for the range rate is less than 3.234×10−8 m/s, and the amplitude of geoid height difference is approximately 0.5 cm. Both differences are below the sensitivity of the state-of-the-art satellite gravity mission, demonstrating a good agreement between HUGG-01 and JPL-V04.


2021 ◽  
Vol 14 (1) ◽  
pp. 97
Author(s):  
Lu Lu ◽  
Meiguo Gao

Interrupted sampling repeater jamming (ISRJ) is becoming more widely used in electronic countermeasures (ECM), thanks to the development of digital radio frequency memory (DRFM). Radar electronic counter-countermeasure (ECCM) is much more difficult when the jamming signal is coherent with the emitted signal. Due to the intermittent transmission feature of ISRJ, the energy accumulation of jamming on the matched filter shows a ‘ladder’ characteristic, whereas the real target signal is continuous. As a consequence, the time delay and distribution of the jamming slice can be obtained based on searching the truncated-matched-filter (TMF) matrix. That is composed of pulse compression (PC) results under matched filters with different lengths. Based on the above theory, this paper proposes a truncated matched filter method by the reconstruction of jamming slices to suppress ISRJ of linear frequency modulation (LFM) radars. The numerical simulations indicate the effectiveness of the proposed method and validate the theoretical analysis.


2021 ◽  
Author(s):  
Zuzana Procházková ◽  
Christopher Kruse ◽  
Aleš Kuchař ◽  
Petr Pišoft ◽  
Petr Šácha

<p>Internal gravity waves (GWs) are ubiquitous in the atmosphere, affecting momentum and energy budgets. However, our understanding of GW effects is still incomplete. As they act on various spatial and temporal scales, global observations of GWs face several difficulties and their parametrizations in climate models employ numerous simplifications and are only poorly constrained. Also, GW analyses in high-resolution datasets contain some uncertainty that we aim to quantify and minimize in our research. We study the uncertainty for a Gaussian high-pass filter method applied on a WRF simulation with horizontal resolution of 3 km covering a domain around the Drake Passage and ranging up to the altitude of 80 km. We show that the momentum flux and drag estimates evaluated by the filtering method are sensitive to the value of a cut-off parameter, especially the horizontal drag components. This motivates us to formulate a new, modified filtering method for GW detection that sets an optimal value of the cut-off parameter at each step based on the spectral information – the method uses a wavelength identified in the horizontal spectrum of kinetic energy. Finally, we note that the type of a response function in the high-pass filter definition also impacts the resulting estimates.</p>


Author(s):  
Zaini Zaini ◽  
Dwi Mutiara Harfina ◽  
Agung P Iswar

Measurement of electric charge on the battery in real-time cannot be separated from external noise and disturbances such as temperature and interference. An optimal State of Charge (SoC) estimator model is needed to make the estimation more accurate. To obtain the model, the battery was tested under room temperature conditions and at a temperature of 40oC to obtain a second-order RC model for the Li-Ion battery used. Based on the test data obtained, the data will be tested first using the Kalman Filter method to get an estimate of the State of Charge (SoC). Tests were carried out using MATLAB software. After the method was tested, the online SoC Estimator design began using the Raspberry Pi Single Board Computer (SBC). After that, the estimator will be tested first using data from offline measurements and then used in real-time (online) SoC estimation measurements. The Voc before the battery discharge test was 13.16 V and after the test, the measured Voc was 11.58 V. During the discharge the Voc was reduced by 1.58 V. While the discharge data from the battery manufacturer showed the reduced Voc during the discharge was 1.2V.


Sign in / Sign up

Export Citation Format

Share Document