scholarly journals The effect of systemic administration of salicylate on the auditory cortex of guinea pigs

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259055
Author(s):  
Mutsumi Kenmochi ◽  
Kentaro Ochi ◽  
Hirotsugu Kinoshita ◽  
Yasuhiro Miyamoto ◽  
Izumi Koizuka

Objective To investigate the effect of systemic administration of salicylate as a tinnitus inducing drug in the auditory cortex of guinea pigs. Methods Extracellular recording of spikes of the primary auditory cortex and dorsocaudal areas in healthy male albino Hartley guinea pigs was continuously performed (pre- and post-salicylate). Results We recorded 160 single units in the primary auditory cortex from five guinea pigs and 156 single units in the dorsocaudal area from another five guinea pigs. The threshold was significantly elevated after the administration of salicylate in both the primary auditory cortex and dorsocaudal areas. The Q10dB value was significantly increased in the primary auditory cortex, whereas it has significantly decreased in the dorsocaudal area. Spontaneous firing activity was significantly decreased in the primary auditory cortex, whereas it has significantly increased in the dorsocaudal area. Conclusion Salicylate induces significant changes in single units of both stimulated and spontaneous activity in the auditory cortex of guinea pigs. The spontaneous activity changed differently depending on its cortical areas, which may be due to the neural elements that generate tinnitus.

2010 ◽  
Vol 68 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Kazuya Saitoh ◽  
Shinji Inagaki ◽  
Masataka Nishimura ◽  
Hideo Kawaguchi ◽  
Wen-Jie Song

2019 ◽  
Author(s):  
Ruiye Ni ◽  
David A. Bender ◽  
Dennis L. Barbour

AbstractThe ability to process speech signals under challenging listening environments is critical for speech perception. Great efforts have been made to reveal the underlying single unit encoding mechanism. However, big variability is usually discovered in single-unit responses, and the population coding mechanism is yet to be revealed. In this study, we are aimed to study how a population of neurons encodes behaviorally relevant signals subjective to change in intensity and signal-noise-ratio (SNR). We recorded single-unit activity from the primary auditory cortex of awake common marmoset monkeys (Callithrix jacchus) while delivering conspecific vocalizations degraded by two different background noises: broadband white noise (WGN) and vocalization babble (Babble). By pooling all single units together, the pseudo-population analysis showed the population neural responses track intra- and inter-trajectory angle evolutions track vocalization identity and intensity/SNR, respectively. The ability of the trajectory to track the vocalizations attribute was degraded to a different degree by different noises. Discrimination of neural populations evaluated by neural response classifiers revealed that a finer optimal temporal resolution and longer time scale of temporal dynamics were needed for vocalizations in noise than vocalizations at multiple different intensities. The ability of population responses to discriminate between different vocalizations were mostly retained above the detection threshold.Significance StatementHow our brain excels in the challenge of precise acoustic signal encoding against noisy environment is of great interest for scientists. Relatively few studies have strived to tackle this mystery from the perspective of neural population responses. Population analysis reveals the underlying neural encoding mechanism of complex acoustic stimuli based upon a pool of single units via vector coding. We suggest the spatial population response vectors as one important way for neurons to integrate multiple attributes of natural acoustic signals, specifically, marmots’ vocalizations.


2013 ◽  
Vol 33 (2) ◽  
pp. 776-789 ◽  
Author(s):  
A. Carrasco ◽  
T. A. Brown ◽  
M. A. Kok ◽  
N. Chabot ◽  
A. Kral ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document