scholarly journals Boosting BCG with recombinant influenza A virus tuberculosis vaccines increases pulmonary T cell responses but not protection against Mycobacterium tuberculosis infection

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259829
Author(s):  
Heni Muflihah ◽  
Manuela Flórido ◽  
Leon C. W. Lin ◽  
Yingju Xia ◽  
James A. Triccas ◽  
...  

The current Mycobacterium bovis BCG vaccine provides inconsistent protection against pulmonary infection with Mycobacterium tuberculosis. Immunity induced by subcutaneous immunization with BCG wanes and does not promote early recruitment of T cell to the lungs after M. tuberculosis infection. Delivery of Tuberculosis (TB) vaccines to the lungs may increase and prolong immunity at the primary site of M. tuberculosis infection. Pulmonary immunization with recombinant influenza A viruses (rIAVs) expressing an immune-dominant M. tuberculosis CD4+ T cell epitope (PR8-p25 and X31-p25) stimulates protective immunity against lung TB infection. Here, we investigated the potential use of rIAVs to improve the efficacy of BCG using simultaneous immunization (SIM) and prime-boost strategies. SIM with parenteral BCG and intranasal PR8-p25 resulted in equivalent protection to BCG alone against early, acute and chronic M. tuberculosis infection. Boosting BCG with rIAVs increased the frequency of IFN-γ-secreting specific T cells (p<0.001) and polyfunctional CD4+ T cells (p<0.05) in the lungs compared to the BCG alone, however, this did not result in a significant increase in protection against M. tuberculosis compared to BCG alone. Therefore, sequential pulmonary immunization with these rIAVs after BCG increased M. tuberculosis-specific memory T cell responses in the lung, but not protection against M. tuberculosis infection.

Author(s):  
Uma Shanmugasundaram ◽  
Allison N Bucsan ◽  
Shashank R. Ganatra ◽  
Chris Ibegbu ◽  
Melanie Quezada ◽  
...  

AbstractMycobacterium tuberculosis (Mtb)-specific T cell responses associated with immune control during asymptomatic latent tuberculosis infection (LTBI) remain poorly understood. Using a non-human primate (NHP) aerosol model, we studied the kinetics, phenotypes and functions of Mtb antigen-specific T cells in peripheral and lung compartments of Mtb-infected asymptomatic rhesus macaques by longitudinally sampling blood and bronchoalveolar lavage (BAL), for up to 24 weeks post-infection. We found significantly higher frequencies of Mtb-specific effector and memory CD4 and CD8 T cells producing IFN-γ in the airways compared to peripheral blood, which were maintained throughout the study period. Moreover, Mtb-specific IL-17+ and IL-17/IFN-γ double-positive T cells were present in the airways but were largely absent in the periphery, suggesting that balanced mucosal Th1/Th17 responses are associated with LTBI. The majority of Mtb-specific CD4 T cells that homed to the airways expressed the chemokine receptor CXCR3 and co-expressed CCR6. Notably, CXCR3+CD4+ cells were found in granulomatous and non-granulomatous regions of the lung and inversely correlated with Mtb burden. Our findings provide novel insights into antigen-specific T cell responses associated with asymptomatic Mtb infection that are relevant for developing better strategies to control TB.


2015 ◽  
Vol 112 (7) ◽  
pp. 2151-2156 ◽  
Author(s):  
Derin B. Keskin ◽  
Bruce B. Reinhold ◽  
Guang Lan Zhang ◽  
Alexander R. Ivanov ◽  
Barry L. Karger ◽  
...  

Vaccines eliciting immunity against influenza A viruses (IAVs) are currently antibody-based with hemagglutinin-directed antibody titer the only universally accepted immune correlate of protection. To investigate the disconnection between observed CD8 T-cell responses and immunity to IAV, we used a Poisson liquid chromatography data-independent acquisition MS method to physically detect PR8/34 (H1N1), X31 (H3N2), and Victoria/75 (H3N2) epitopes bound to HLA-A*02:01 on human epithelial cells following in vitro infection. Among 32 PR8 peptides (8–10mers) with predicted IC50 < 60 nM, 9 were present, whereas 23 were absent. At 18 h postinfection, epitope copies per cell varied from a low of 0.5 for M13–11 to a high of >500 for M158–66 with PA, HA, PB1, PB2, and NA epitopes also detected. However, aside from M158–66, natural CD8 memory responses against conserved presented epitopes were either absent or only weakly observed by blood Elispot. Moreover, the functional avidities of the immunodominant M158–66/HLA-A*02:01-specific T cells were so poor as to be unable to effectively recognize infected human epithelium. Analysis of T-cell responses to primary PR8 infection in HLA-A*02:01 transgenic B6 mice underscores the poor avidity of T cells recognizing M158–66. By maintaining high levels of surface expression of this epitope on epithelial and dendritic cells, the virus exploits the combination of immunodominance and functional inadequacy to evade HLA-A*02:01-restricted T-cell immunity. A rational approach to CD8 vaccines must characterize processing and presentation of pathogen-derived epitopes as well as resultant immune responses. Correspondingly, vaccines may be directed against “stealth” epitopes, overriding viral chicanery.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cheleka A. M. Mpande ◽  
Pia Steigler ◽  
Tessa Lloyd ◽  
Virginie Rozot ◽  
Boitumelo Mosito ◽  
...  

Reversion of immune sensitization tests for Mycobacterium tuberculosis (M.tb) infection, such as interferon-gamma release assays or tuberculin skin test, has been reported in multiple studies. We hypothesized that QuantiFERON-TB Gold (QFT) reversion is associated with a decline of M.tb-specific functional T cell responses, and a distinct pattern of T cell and innate responses compared to persistent QFT+ and QFT- individuals. We compared groups of healthy adolescents (n=~30 each), defined by four, 6-monthly QFT tests: reverters (QFT+/+/-/-), non-converters (QFT-/-/-/-) and persistent positives (QFT+/+/+/+). We stimulated peripheral blood mononuclear cells with M.tb antigens (M.tb lysate; CFP-10/ESAT-6 and EspC/EspF/Rv2348 peptide pools) and measured M.tb-specific adaptive T cell memory, activation, and functional profiles; as well as functional innate (monocytes, natural killer cells), donor-unrestricted T cells (DURT: γδ T cells, mucosal-associated invariant T and natural killer T-like cells) and B cells by flow cytometry. Projection to latent space discriminant analysis was applied to determine features that best distinguished between QFT reverters, non-converters and persistent positives. No longitudinal changes in immune responses to M.tb were observed upon QFT reversion. M.tb-specific Th1 responses detected in reverters were of intermediate magnitude, higher than responses in QFT non-converters and lower than responses in persistent positives. About one third of reverters had a robust response to CFP-10/ESAT-6. Among those with measurable responses, lower proportions of TSCM (CD45RA+CCR7+CD27+) and early differentiated (CD45RA-) IFN-γ-TNF+IL-2- M.tb lysate-specific CD4+ cells were observed in reverters compared with non-converters. Conversely, higher proportions of early differentiated and lower proportions of effector (CD45RA-CCR7-) CFP10/ESAT6-specific Th1 cells were observed in reverters compared to persistent-positives. No differences in M.tb-specific innate, DURT or B cell functional responses were observed between the groups. Statistical modelling misclassified the majority of reverters as non-converters more frequently than they were correctly classified as reverters or misclassified as persistent positives. These findings suggest that QFT reversion occurs in a heterogeneous group of individuals with low M.tb-specific T cell responses. In some individuals QFT reversion may result from assay variability, while in others the magnitude and differentiation status of M.tb-specific Th1 cells are consistent with well-controlled M.tb infection.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 126
Author(s):  
Lilin Lai ◽  
Nadine Rouphael ◽  
Yongxian Xu ◽  
Amy C. Sherman ◽  
Srilatha Edupuganti ◽  
...  

The cellular immune responses elicited by an investigational vaccine against an emergent variant of influenza (H3N2v) are not fully understood. Twenty-five subjects, enrolled in an investigational influenza A/H3N2v vaccine study, who received two doses of vaccine 21 days apart, were included in a sub-study of cellular immune responses. H3N2v-specific plasmablasts were determined by ELISpot 8 days after each vaccine dose and H3N2v specific CD4+ T cells were quantified by intracellular cytokine and CD154 (CD40 ligand) staining before vaccination, 8 and 21 days after each vaccine dose. Results: 95% (19/20) and 96% (24/25) subjects had pre-existing H3N2v specific memory B, and T cell responses, respectively. Plasmablast responses at Day 8 after the first vaccine administration were detected against contemporary H3N2 strains and correlated with hemagglutination inhibition HAI (IgG: p = 0.018; IgA: p < 0.001) and Neut (IgG: p = 0.038; IgA: p = 0.021) titers and with memory B cell frequency at baseline (IgA: r = 0.76, p < 0.001; IgG: r = 0.74, p = 0.0001). The CD4+ T cells at Days 8 and 21 expanded after prime vaccination and this expansion correlated strongly with early post-vaccination HAI and Neut titers (p ≤ 0.002). In an adult population, the rapid serological response observed after initial H3N2v vaccination correlates with post-vaccination plasmablasts and CD4+ T cell responses.


2019 ◽  
Vol 221 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Arnaud G L’huillier ◽  
Victor H Ferreira ◽  
Cedric Hirzel ◽  
Yoichiro Natori ◽  
Jaclyn Slomovic ◽  
...  

Abstract Background Despite annual immunization, solid organ transplant (SOT) patients remain at increased risk for severe influenza infection because of suboptimal vaccine immunogenicity. We aimed to compare the CD4+ and CD8+ T-cell responses of the high-dose (HD) and the standard-dose (SD) trivalent inactivated vaccine. Methods We collected peripheral blood mononuclear cells pre- and postimmunization from 60 patients enrolled in a randomized trial of HD versus SD vaccine (30 HD; 30 SD) during the 2016–2017 influenza season. Results The HD vaccine elicited significantly greater monofunctional and polyfunctional CD4+ and CD8+ T-cell responses against influenza A/H1N1, A/H3N2, and B. For example, median vaccine-elicited influenza-specific polyfunctional CD4+ T cells were higher in recipients of the HD than SD vaccine after stimulation with influenza A/H1N1 (1193 vs 0 per 106 CD4+ T cells; P = .003), A/H3N2 (1154 vs 51; P = .008), and B (1102 vs 0; P = .001). Likewise, vaccine-elicited influenza-specific polyfunctional CD8+ T cells were higher in recipients of the HD than SD vaccine after stimulation with influenza B (367 vs 0; P = .002). Conclusions Our study provides novel evidence that HD vaccine elicits greater cellular responses compared with the SD vaccine in SOT recipients, which provides support to preferentially consider use of HD vaccination in the SOT setting.


2005 ◽  
Vol 79 (7) ◽  
pp. 4329-4339 ◽  
Author(s):  
Samita S. Andreansky ◽  
John Stambas ◽  
Paul G. Thomas ◽  
Weidong Xie ◽  
Richard J. Webby ◽  
...  

ABSTRACT The extent to which CD8+ T cells specific for other antigens expand to compensate for the mutational loss of the prominent DbNP366 and DbPA224 epitopes has been investigated using H1N1 and H3N2 influenza A viruses modified by reverse genetics. Significantly increased numbers of CD8+ KbPB1703 +, CD8+ KbNS2114 +, and CD8+ DbPB1-F262 + T cells were found in the spleen and in the inflammatory population recovered by bronchoalveolar lavage from mice that were first given the −NP−PA H1N1 virus intraperitoneally and then challenged intranasally with the homologous H3N2 virus. The effect was less consistent when this prime-boost protocol was reversed. Also, though the quality of the response measured by cytokine staining showed some evidence of modification when these minor CD8+-T-cell populations were forced to play a more prominent part, the effects were relatively small and no consistent pattern emerged. The magnitude of the enhanced clonal expansion following secondary challenge suggested that the prime-boost with the −NP−PA viruses gave a response overall that was little different in magnitude from that following comparable exposure to the unmanipulated viruses. This was indeed shown to be the case when the total response was measured by ELISPOT analysis with virus-infected cells as stimulators. More surprisingly, the same effect was seen following primary challenge, though individual analysis of the CD8+ KbPB1703 +, CD8+ KbNS2114 +, and CD8+ DbPB1-F262 + sets gave no indication of compensatory expansion. A possible explanation is that novel, as yet undetected epitopes emerge following primary exposure to the −NP−PA deletion viruses. These findings have implications for both natural infections and vaccines.


1999 ◽  
Vol 67 (12) ◽  
pp. 6461-6472 ◽  
Author(s):  
Roxana E. Rojas ◽  
Kithiganahalli N. Balaji ◽  
Ahila Subramanian ◽  
W. Henry Boom

ABSTRACT Mycobacterium tuberculosis is the etiologic agent of human tuberculosis and is estimated to infect one-third of the world's population. Control of M. tuberculosis requires T cells and macrophages. T-cell function is modulated by the cytokine environment, which in mycobacterial infection is a balance of proinflammatory (interleukin-1 [IL-1], IL-6, IL-8, IL-12, and tumor necrosis factor alpha) and inhibitory (IL-10 and transforming growth factor β [TGF-β]) cytokines. IL-10 and TGF-β are produced by M. tuberculosis-infected macrophages. The effect of IL-10 and TGF-β on M. tuberculosis-reactive human CD4+and γδ T cells, the two major human T-cell subsets activated byM. tuberculosis, was investigated. Both IL-10 and TGF-β inhibited proliferation and gamma interferon production by CD4+ and γδ T cells. IL-10 was a more potent inhibitor than TGF-β for both T-cell subsets. Combinations of IL-10 and TGF-β did not result in additive or synergistic inhibition. IL-10 inhibited γδ and CD4+ T cells directly and inhibited monocyte antigen-presenting cell (APC) function for CD4+ T cells and, to a lesser extent, for γδ T cells. TGF-β inhibited both CD4+ and γδ T cells directly and had little effect on APC function for γδ and CD4+ T cells. IL-10 down-regulated major histocompatibility complex (MHC) class I, MHC class II, CD40, B7-1, and B7-2 expression on M. tuberculosis-infected monocytes to a greater extent than TGF-β. Neither cytokine affected the uptake of M. tuberculosis by monocytes. Thus, IL-10 and TGF-β both inhibited CD4+ and γδ T cells but differed in the mechanism used to inhibit T-cell responses to M. tuberculosis.


2010 ◽  
Vol 84 (7) ◽  
pp. 3312-3319 ◽  
Author(s):  
Xinhui Ge ◽  
Venus Tan ◽  
Paul L. Bollyky ◽  
Nathan E. Standifer ◽  
Eddie A. James ◽  
...  

ABSTRACT Very limited evidence has been reported to show human adaptive immune responses to the 2009 pandemic H1N1 swine-origin influenza A virus (S-OIV). We studied 17 S-OIV peptides homologous to immunodominant CD4 T epitopes from hemagglutinin (HA), neuraminidase (NA), nuclear protein (NP), M1 matrix protein (MP), and PB1 of a seasonal H1N1 strain. We concluded that 15 of these 17 S-OIV peptides would induce responses of seasonal influenza virus-specific T cells. Of these, seven S-OIV sequences were identical to seasonal influenza virus sequences, while eight had at least one amino acid that was not conserved. T cells recognizing epitopes derived from these S-OIV antigens could be detected ex vivo. Most of these T cells expressed memory markers, although none of the donors had been exposed to S-OIV. Functional analysis revealed that specific amino acid differences in the sequences of these S-OIV peptides would not affect or partially affect memory T-cell responses. These findings suggest that without protective antibody responses, individuals vaccinated against seasonal influenza A may still benefit from preexisting cross-reactive memory CD4 T cells reducing their susceptibility to S-OIV infection.


Sign in / Sign up

Export Citation Format

Share Document