scholarly journals Physico-Chemical Properties of Sacha Inchi (Plukenetia volubilis L.) Seed Oil from Vietnam

2019 ◽  
Vol 32 (2) ◽  
pp. 335-338 ◽  
Author(s):  
Huynh Cang Mai ◽  
Duy Chinh Nguyen ◽  
Nguyen Phu Thuong Nhan ◽  
Long Giang Bach

Sacha inchi (Plukenetia volubilis L.) seed oil was studied for physico-chemical characteristics and chemical composition. Through gas chromatography-flame ionization (GC-FID) process, the fatty acid composition in the oil was analyzed, revealing that the oil is rich in linoleic acid (42.62 %), linolenic acid (36.32 %) and oleic acid (11.64 %). The tocopherol level in the oil was also high (7.7 ± 0.005 mg/Kg), revealed by high-performance liquid chromatography/ultraviolet-visible detector (HPLC/UV-VIS). The physico-chemical properties of the oil were also examined, including viscosity (88-92 cP), acid value (2.05 ± 0.005 mg KOH/g), saponification content (183.5 ± 1.45 mg KOH/g) and iodine value (192.4 ± 1.55 g I2/100 g). The results also indicated that sacha inchi is a health beneficial oil due to the high contents of essential fatty acids (ω-3, ω-6 and ω-9).

Author(s):  
Williams Nashuka Kaigama ◽  
Abu Emmanuel Benjamin ◽  
Ibrahim Usman ◽  
Thankgod Daniel

Due to the high demand for vegetable oil by soap industries, the quest for alternative raw material is on the increase. In this study, vegetable oil was extracted from the underutilise seeds of Lagenaria siceraria using n-hexane; The Physico-chemical properties of the oil were analysed: iodine value 65 Ig/100 g, acid value 2.50 mg/KOH/g, saponification value 256 mgKOH/g, pH 6.20, specific gravity 0.902, the refractive index of 1.47 and oil yield 52%. The properties of the oil were compared with oil extracted from other sources. The properties of the oil suggest it can use for both commercial and industrial purposes. The extracted oil was then used to prepared soap and its properties were compared with the properties of soaps prepared from other oils. The physicochemical parameters of the prepared soaps which include foam height, hardness, pH and cleansing power were evaluated. The soap made from Lagenaria siceraria seeds oil has foam height of 2.0 cm lower than palm kernel oil (2.1 cm) and higher than soya beans (0.55 cm). Soap made from Lagenaria siceraria seed oil has an appreciable degree of hardness and good cleansing power compared to soaps prepared from other oils. The pH of all the soaps prepared is within the standard of the regulating agency in Nigeria. From the result obtained, it shows the underutilised Lagenaria siceraria seed oil can use as an alternative raw material in the commercial production of soap.


2019 ◽  
Vol 7 (1) ◽  
pp. 48-52
Author(s):  
Olufunso Omowunmi Adeniyi

Citrullus lanatus (watermelon) and Sesamum indicum (sesame) are edible plants that provide a lot of nutritional benefits to man; despite their wide consumption and benefits, their seed oils remain underutilized. Seed oils from these plants found in south-western Nigeria were analyzed for their physico-chemical properties. Oil was extracted from the seeds using Soxhlet apparatus and n-hexane as the solvent; physico-chemical properties were determined using standard analytical procedures. Watermelon seed oil had a golden brown colour while sesame seed oil had a carton brown colour; they had saponification values of 258.99 mgKOH/g and 261.34 mgKOH/g respectively. Acid value ranged from 2.13 – 2.51 mgKOH/g; iodine value of 39.7 - 42.3 gI2/100g and peroxide value of 1.39 – 2.43 meqKOH/g was determined in the seed oils. Oils from these seeds have numerous domestic and industrial potentials such as cooking, frying, production of soaps, and cosmetics to mention a few.


2017 ◽  
Vol 46 (6) ◽  
pp. 485-495 ◽  
Author(s):  
Emiliana Rose Jusoh Taib ◽  
Luqman Chuah Abdullah ◽  
Min Min Aung ◽  
Mahiran Basri ◽  
Mek Zah Salleh ◽  
...  

Purpose This paper aims to demonstrate the synthesis of polyesterification reaction of non-edible jatropha seed oil (JO) and acrylic acid, which leads to the production of acrylated epoxidised-based resin. To understand the physico-chemical characteristics when synthesis the JO-based epoxy acrylate, the effect of temperature on the reaction, concentration of acrylic acid and role of catalyst on reaction time and acid value were studied. Design/methodology/approach First, the double bond in JO was functionalised by epoxidation using the solvent-free performic method. The subsequent process was acrylation with acrylic acid using the base catalyst triethylamine and 4-methoxyphenol as an inhibitor respectively. The physico-chemical characteristics during the synthesis of the epoxy acrylate such as acid value was monitored and analysed. The formation of the epoxy and acrylate group was confirmed by a Fourier transform infrared spectroscopy spectra analysis and nuclear magnetic resonance analysis. Findings The optimum reaction condition was achieved at a ratio of epoxidised JO to acrylic acid of 1:1.5 and the reaction temperature of 110°C. This was indicated by the acid value reduction from 86 to 15 mg KOH/g sample at 6 hours. Practical implications The JO-based epoxy acrylate synthesised has a potential to be used in formulations the prepolymer resin for UV curable coating applications. The JO which is from natural resources and is sustainable raw materials that possible reduce the dependency on petroleum-based coating. Originality/value The epoxidised jatropha seed oil epoxy acrylate was synthesised, as a new type of oligomer resin that contains a reactive acrylate group, which can be alternative to petroleum-based coating and can used further in the formulation of the radiation curable coating.


NanoNEXT ◽  
2021 ◽  
pp. 16-25
Author(s):  
Henry L. Barnabas ◽  
Ngoshe A.M ◽  
Joshua A Gidigbi

Nanoparticles are known to be of wide applications in various fields of human endeavours. Many methods of syntheses such as physical, chemical are harmful to the environment, thus, this study utilised green production of nanoparticles via waste product such as Citrulus vulgaris seed. Oil was extracted using soxhlet extractor from the prepared Citrulus vulgaris seed. Physico-chemical properties such as percentage yield, acid value, peroxide value were carried out on the Citrulus vulgaris seed oil. Citrulus vulgaris was further processed to form lecithin. The lecithin extracted was characterized for colour, Peroxide Value, Acetone Insoluble (AI), Acid Value, solubility in water and organic solvents. The result of the physico-chemical parameters was in conformity with the standard and various literatures. Therefore, lecithin is processed into dispersed aqueous silver nanoparticles by the addition of silver nitrate. The chemical reaction was monitored progressively using visual assessment, UV-visible and FTIR Spectroscopy. The size and surface of the dispersed silver nanoparticles produced was analysed using Atomic Force Microscopy. Therefore, a dispersed aqueous silver nanoparticle was produced from lecithin made from Citrulus vulgaris seed oil.


1970 ◽  
Vol 24 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Mohammad Mizanur Rahman ◽  
Sudhangshu Kumar Roy ◽  
Mohammad Shahjahan

Seven fatty acids were isolated from pet-ether extract of Nyctanthes arbor-tristis Linn (Seuli) leaves. The relative percentages of the major fatty acids were identified by GLC as palmitic acid (23.88%), linoleic acid (8.95%), stearic acid (47.56%) and oleic acid (5.07%). The yield of the leaves fat was 2.10%. Acid value of seed oil was found to be 76.27 and suggests that this oil is inedible. Physico-chemical characteristic, such as acid value, iodine value, moisture, ash, lignin, crude fibre, fat, protein and carbohydrate of the Seuli leaf were also determined. Keywords: Seuli leaves; Nyctanthes arbor-tristis Linn; fatty acids composition. DOI: http://dx.doi.org/10.3329/jbcs.v24i2.9711 Journal of Bangladesh Chemical Society, Vol. 24(2), 215-220, 2011


2014 ◽  
Vol 70 (2) ◽  
Author(s):  
Mohamad Azuwa Mohamed ◽  
Wan Norharyati Wan Salleh ◽  
Juhana Jaafar ◽  
Norhaniza Yusof

The evolution of desirable physico-chemical properties in high performance photocatalyst materials involves steps that must be carefully designed, controlled, and optimized. This study investigated the role of key parameter in the preparation and photocatalytic activity analysis of the mixed phase of anatase/rutile TiO2 nanoparticles, prepared via sol-gel method containing titanium-n-butoxide Ti(OBu)4 as a precursor material, nitric acid as catalyst, and isopropanol as solvent. The prepared TiO2 nanoparticles were characterized by means of XRD, SEM, and BET analyses, and UV-Vis-NIR spectroscopy. The results indicated that the calcination temperature play an important role in the physico-chemical properties and photocatalytic activity of the resulting TiO2 nanoparticles. Different calcination temperatures would result in different composition of anatase and rutile. The photocatalytic activity of the prepared mixed phase of anatase/rutile TiO2 nanoparticles was measured by photodegradation of 50 ppm phenol in an aqueous solution. The commercial anatase from Sigma-Aldrich and Degussa P25 were used for comparison purpose. The mixed phase of anatase/rutile TiO2 nanoparticles (consists of 38.3% anatase and 61.7% rutile) that was prepared at 400°C exhibited the highest photocatalytic activity of 84.88% degradation of phenol. The result was comparable with photocatalytic activity demonstrated by Degussa P25 by 1.54% difference in phenol degradation. The results also suggested that the mixed phase of anatase/rutile TiO2 nanoparticles is a promising candidate for the phenol degradation process. The high performance of photocatalyst materials may be obtained by adopting a judicious combination of anatase/rutile and optimized calcination conditions.


2014 ◽  
Vol 983 ◽  
pp. 39-43
Author(s):  
M. A. Alaa ◽  
Kamal Yusoh ◽  
S.F. Hasany

Petroleum based polyurethanes are contributing major portions in the world requirement. To overcome the environmental issues and price adaptability, there is always a massive demand of utilization of renewable resources for polyurethane synthesis with comparable physico-chemical properties. Castor oil is the only major natural vegetable oil that contains a hydroxyl group (-OH) and unsaturated double bonds (C=C) in its organic chain and therefore can be employed with or without modification due to the excellent properties derived from the hydrophobic nature of triglycerides. In this study, physico-chemical properties of high performance polyurethane synthesized from Poly propylene glycol (PPG) in comparison with a combination of PPG and Castor oil (a renewable source), by in situ polymerization technique has been studied. The variations in properties of both types of polyurethanes are evaluated by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Thermogravimetric analysis technique (TGA). Tensile strength properties were investigated by Film Tensile testing equipment. Results indicated the presence of large-CH stretching in castor oil mixed polyurethane with a larger oxidative thermal stability, over a pure PPG polyurethanes. Tensile properties were found almost comparable in pure and mixed polymers, which signify the usage of mixed polymer in coming future, to overcome the environmental and economical crisis in polyurethanes synthesis.


LWT ◽  
2020 ◽  
Vol 133 ◽  
pp. 109992
Author(s):  
Hoang Chinh Nguyen ◽  
Dat Phu Vuong ◽  
Ngoc Thanh Tam Nguyen ◽  
Nguyen Phuong Nguyen ◽  
Chia-Hung Su ◽  
...  

2018 ◽  
Vol 7 (3.32) ◽  
pp. 147
Author(s):  
Enjarlis . ◽  
Sri Handayani ◽  
Yenny Anwar

Cocozone Oil (CCO) is one of the ozonated oils, obtained by the ozonation process of Virgin Coconut Oil (VCO), that can be used as a material for skin care products. The purpose of this study was to determine: (1) the optimum time and ozone dose for CCO synthesis from VCO using ozonation; (2) the changes in physico-chemical properties of the oil; (3) the change in saturated-unsaturated fatty acids content and the existence any new substances in the CCO. The ozonation of VCO was carried out for 25 hours, with monitoring at the intervals of 4, 8, 12, 16, 20 and 25 hours, at a constant temperature (25 °C) with an ozone flow of 0.25 g/hr. From this study it can be concluded that: (1) The optimal time or dose of ozone required for the synthesis of CCO from VCO through the ozonation process was 25 hours or equivalent to 0.0208 gr O3/ml VCO, (2) Physico-chemical characteristics of the CCO produced: resulting acid value (AV) was 2.71 mg/gram i.e. an increase of 630%; the peroxide value (PV) obtained was 238,77 mgrek/kg i.e. increase  of 3,453 %; the Iodine value (IV) was 0 (zero) i.e. a decrease of 100%; and, the viscosity was 13.30 centipoice i.e. it rose 116%; (3) the total content of saturated fatty acid increased by 3.34%  whereas the unsaturated fatty acid decreased by 98.83; and based on the analysis results of 13C and 1H NMR spectra, the resultant CCO contains a new substance, that is aldehydes.  


Sign in / Sign up

Export Citation Format

Share Document