ON MODIFICATION OF THE MEAN SQUARED ERROR LOSS FUNCTION FOR SOLVING NONLINEAR HETEROSCEDASTIC ERRORS-IN-VARIABLES PROBLEMS

2017 ◽  
Vol 13 (3) ◽  
pp. 284-291 ◽  
Author(s):  
Ahmed Sadoun ◽  
Halim Zeghdoudi ◽  
Fatma Zohra Attoui ◽  
Mohamed Riad Remita

Author(s):  
M. A. Hegazy ◽  
R. E. Abd El-Kader ◽  
A. A. El-Helbawy ◽  
G. R. Al-Dayian

In this paper, Bayesian inference is used to estimate the parameters, survival, hazard and alternative hazard rate functions of discrete Gompertz distribution. The Bayes estimators are derived under squared error loss function as a symmetric loss function and linear exponential loss function as an asymmetric loss function. Credible intervals for the parameters, survival, hazard and alternative hazard rate functions are obtained. Bayesian prediction (point and interval) for future observations of discrete Gompertz distribution based on two-sample prediction are investigated. A numerical illustration is carried out to investigate the precision of the theoretical results of the Bayesian estimation and prediction on the basis of simulated and real data. Regarding the results of simulation seems to perform better when the sample size increases and the level of censoring decreases. Also, in most cases the results under the linear exponential loss function is better than the corresponding results under squared error loss function. Two real lifetime data sets are used to insure the simulated results.


Author(s):  
Eka Rizki Wahyuni, Setyo Wira Rizki, Hendra Perdana

Data survival adalah data yang menjelaskan tentang waktu suatu individu atau objek dapat bertahan hingga terjadinya suatu kejadian. Penelitian ini menggunakan metode Bayesian dengan pendekatan Squared Error Loss Function (SELF) untuk melakukan estimasi parameter pada model survival. Proses estimasi parameter metode Bayesian SELF memerlukan informasi dari fungsi likelihood dan distribusi prior yang kemudian akan membentuk distribusi posterior. Hasil dari estimasi parameter metode Bayesian SELF diterapkan pada data kasus penderita kanker paru-paru untuk mengetahui peluang bertahan hidup pasien penderita kanker paru-paru. Kesimpulan dari penelitian ini adalah hasil dari estimasi parameter distribusi Rayleigh prior Uniform dengan menggunakan metode Bayesian SELF menghasilkan nilai survival pada hari ke-95 sebesar 0,929056666 dan nilai hazard 1,549169  sedangkan hari ke-791 menghasilkan nilai survival sebesar 0,006087581 dan nilai hazard sebesar 1,289887 . Hal ini berarti, nilai fungsi survival bergerak mendekati nol sesuai dengan karakteristik fungsi survival dan fungsi hazard yang bergerak naik mendekati satu sesuai dengan karakteristik distribusi Rayleigh. Kata Kunci: Survival, Rayleigh, Bayesian, SELF.


2018 ◽  
Vol 28 (2) ◽  
pp. 162
Author(s):  
Huda A. Rasheed

In the current study, we have been derived some Basyian estimators for the parameter and relia-bility function of the inverse Rayleigh distribution under Generalized squared error loss function. In order to get the best understanding of the behavior of Bayesian analysis, we consider non-informative prior for the scale parameter using Jefferys prior Information as well as informative prior density represented by Gamma distribution. Monte-Carlo simulation have been employed to compare the behavior of different estimates for the scale parameter and reliability function of in-verse Rayleigh distribution based on mean squared errors and Integrated mean squared errors, respectively. In the current study, we observed that more occurrence of Bayesian estimate using Generalized squared error loss function using Gamma prior is better than other estimates for all cases


2020 ◽  
Vol 9 (2) ◽  
pp. 38
Author(s):  
Josphat. K. Kinyanjui ◽  
Betty. C. Korir

This paper develops a Bayesian analysis of the scale parameter in the Weibull distribution with a scale parameter  θ  and shape parameter  β (known). For the prior distribution of the parameter involved, inverted Gamma distribution has been examined. Bayes estimates of the scale parameter, θ  , relative to LINEX loss function are obtained. Comparisons in terms of risk functions of those under LINEX loss and squared error loss functions with their respective alternate estimators, viz: Uniformly Minimum Variance Unbiased Estimator (U.M.V.U.E) and Bayes estimators relative to squared error loss function are made. It is found that Bayes estimators relative to squared error loss function dominate the alternative estimators in terms of risk function.


2013 ◽  
Vol 10 (2) ◽  
pp. 480-488 ◽  
Author(s):  
Baghdad Science Journal

In this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of Bayes estimators of the shape parameter of the Maxwell distribution decreases with the increase of Jeffreys prior constants. The results also show that values of Bayes estimators are almost close to the maximum likelihood estimator when the Jeffreys prior constants are small, yet they are identical in some certain cases. Comparison with respect to loss functions show that Bayes estimators under the modified squared error loss function has greater MSE than the squared error loss function especially with the increase of r.


2018 ◽  
Vol 24 (106) ◽  
pp. 49
Author(s):  
جنان عباس ناصر

   A comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared error loss function and weighted squared error loss function) in the cases of the three different sets of prior distributions .Simulations is employed to obtain results. And determine the best estimator according to the smallest value of mean squared error and weighted mean squared error. We found  that the best estimation for the parameter for all sample sizes (n) , when the double prior distribution for  is SRIG - the natural conjugate family of priors distribution with values (a=5, b=0.5, =8, =0.5) and (a=8, b=1, =5, =1) for the  true value of  respectively .Also ,we obtained the best estimation for  when the double prior distribution for  is the natural conjugate family of priors-non-informative distribution with values(=0.5, =5, c=1) for  the true value of ().  


Sign in / Sign up

Export Citation Format

Share Document