scholarly journals Penyelesaian Persamaan Telegraph Dan Simulasinya

2013 ◽  
Vol 2 (1) ◽  
pp. 33
Author(s):  
Agus Miftakus Surur ◽  
Yudi Ari Adi ◽  
Sugiyanto Sugiyanto

Equation Telegraph is one of type from wave equation. Solving of the wave equation obtainable by using Green's function with the method of boundary condition problem. This research aim to to show the process obtain;get the mathematical formula from wave equation and also know the form of solution of wave equation by using Green's function. Result of analysis indicate that the process get the mathematical formula from wave equation from applicable Green's function in equation which deal with the wave equation, that is applied in equation Telegraph.  Solution started with searching public form from Green's function, hereinafter look for the solving of wave equation in Green's function. Application from the wave equation used to look for the solving of equation Telegraph.  Result from equation Telegraph which have been obtained will be shown in the form of picture (knowable to simulasi) so that form of the the equation Telegraph.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Haiming Yuan ◽  
Xian-Hui Ge

Abstract The “pole-skipping” phenomenon reflects that the retarded Green’s function is not unique at a pole-skipping point in momentum space (ω, k). We explore the universality of pole-skipping in different geometries. In holography, near horizon analysis of the bulk equation of motion is a more straightforward way to derive a pole-skipping point. We use this method in Lifshitz, AdS2 and Rindler geometries. We also study the complex hydrodynamic analyses and find that the dispersion relations in terms of dimensionless variables $$ \frac{\omega }{2\pi T} $$ ω 2 πT and $$ \frac{\left|k\right|}{2\pi T} $$ k 2 πT pass through pole-skipping points $$ \left(\frac{\omega_n}{2\pi T},\frac{\left|{k}_n\right|}{2\pi T}\right) $$ ω n 2 πT k n 2 πT at small ω and k in the Lifshitz background. We verify that the position of the pole-skipping points does not depend on the standard quantization or alternative quantization of the boundary theory in AdS2× ℝd−1 geometry. In the Rindler geometry, we cannot find the corresponding Green’s function to calculate pole-skipping points because it is difficult to impose the boundary condition. However, we can still obtain “special points” near the horizon where bulk equations of motion have two incoming solutions. These “special points” correspond to the nonuniqueness of the Green’s function in physical meaning from the perspective of holography.


1999 ◽  
Author(s):  
Paul E. Barbone

Abstract We derive a one-way wave equation representation of the “free space” Green’s function for an inhomogeneous medium. Our representation results from an asymptotic expansion in inverse powers of the wavenumber. Our representation takes account of losses due to scattering in all directions, even though only one-way operators are used.


Sign in / Sign up

Export Citation Format

Share Document