BEHAVIOR OF STAINLESS STEEL LIPPED CHANNEL SECTIONS SUBJECTED TO ECCENTRIC COMPRESSION

Author(s):  
Mohammad Anwar-Us-Saadat ◽  
Shameem Ahmed ◽  
Mahmud Ashraf

The design philosophy of stainless steel requires appropriate recognition of observed material nonlinearity and pronounced strain hardening. A rational method namely, the Continuous Strength Method (CSM) has recently been to incorporate these effects but, in its current form, CSM yields better results for stocky sections. Individual capacities (i.e., pure compression and pure bending) for all types of sections and cross-section resistance against combined loading (i.e. compression plus bending) for RHS and I-sections can be predicted using CSM. The current research numerically investigates the performance of stainless steel lipped channel (LC) sections subjected to compression and bending. Nonlinear finite element models are developed and validated using available experimental results, and are consequently used to generate additional results for a wide range of cross-sections through parametric studies. Current CSM guidelines are used to propose a new set of formulations for predicting the section resistance of lipped channel sections subjected to combined loading.

2013 ◽  
Vol 81 (4) ◽  
Author(s):  
S.V. Levyakov

The paper discusses nonlinear equations of in-plane bending of curved tubes formulated by E. Reissner in terms of two unknown functions and two unknown parameters. To solve the equations, a numerical method based on the finite-difference approximations and Newton–Raphson iteration technique is proposed. Deformations and stresses in tubes of circular and noncircular cross sections are studied for a wide range of geometrical parameters. The accuracy of the equations is evaluated by comparing the numerical results with predictions obtained by a special shell finite element.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1785
Author(s):  
Daniel Jindra ◽  
Zdeněk Kala ◽  
Jiří Kala

Stainless-steel elements are increasingly used in a wide range of load-bearing structures due to their strength, minimal maintenance requirements, and aesthetic appearance. Their response differs from standard steels; therefore, it is necessary to choose a different procedure when creating a correct computational model. Seven groups of numerical models differing in the used formulation of elements integration, mesh density localization, nonlinear material model, and initial geometric imperfection were calibrated. The results of these advanced simulations were validated with published results obtained by an extensive experimental approach on circular hollow sections columns. With regard to the different slenderness of the cross-sections, the influence of the initial imperfection in the form of global and local loss of stability on the response was studied. Responses of all models were validated by comparing the averaged normalized ultimate loads and the averaged normalized deflections with experimentally obtained results.


2016 ◽  
Vol 104 ◽  
pp. 225-237 ◽  
Author(s):  
Mohammad Anwar-Us-Saadat ◽  
Mahmud Ashraf ◽  
Shameem Ahmed

Author(s):  
John J. Friel

Committee E-04 on Metallography of the American Society for Testing and Materials (ASTM) conducted an interlaboratory round robin test program on quantitative energy dispersive spectroscopy (EDS). The test program was designed to produce data on which to base a precision and bias statement for quantitative analysis by EDS. Nine laboratories were sent specimens of two well characterized materials, a type 308 stainless steel, and a complex mechanical alloy from Inco Alloys International, Inconel® MA 6000. The stainless steel was chosen as an example of a straightforward analysis with no special problems. The mechanical alloy was selected because elements were present in a wide range of concentrations; K, L, and M lines were involved; and Ta was severely overlapped with W. The test aimed to establish limits of precision that could be routinely achieved by capable laboratories operating under real world conditions. The participants were first allowed to use their own best procedures, but later were instructed to repeat the analysis using specified conditions: 20 kV accelerating voltage, 200s live time, ∼25% dead time and ∼40° takeoff angle. They were also asked to run a standardless analysis.


Alloy Digest ◽  
1982 ◽  
Vol 31 (6) ◽  

Abstract Type HN is an iron-chromium-nickel alloy containing sufficient chromium for good high-temperature corrosion resistance and with nickel content in excess of the chromium. This alloy has properties somewhat similar to the more widely used ACI Type HT alloy but with better ductility. Type HN is used for highly stressed components in the 1800-2000 F temperature range. It is used in the aircraft, automotive, petroleum, petrochemical and power industries for a wide range of components and parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-410. Producer or source: Various stainless steel casting companies.


2020 ◽  
pp. 136943322098166
Author(s):  
Shuhao Yin ◽  
Bin Rong ◽  
Lei Wang ◽  
Yiliang Sun ◽  
Wuchen Zhang ◽  
...  

This paper studies the shear performance of the connection with the external stiffening ring between the square steel tubular column and unequal-depth steel beams. Two specimens of interior column connections were tested under low cyclic loading. The deformation characteristics and failure modes exhibited by the test phenomena can be summarized as: (1) two specimens all exhibited shear deformation in steel tube web of the panel zone and (2) weld fracture in the panel zone and plastic hinge failure at beam end were observed. Besides, load-displacement behaviors and strain distributions have been also discussed. The nonlinear finite element models were developed to verify the test results. Comparative analyses of the bearing capacity, failure mode, and load-paths between the equal-depth and unequal-depth beam models have been carried out.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Antonio Costantini ◽  
Federico De Lillo ◽  
Fabio Maltoni ◽  
Luca Mantani ◽  
Olivier Mattelaer ◽  
...  

Abstract High-energy lepton colliders with a centre-of-mass energy in the multi-TeV range are currently considered among the most challenging and far-reaching future accelerator projects. Studies performed so far have mostly focused on the reach for new phenomena in lepton-antilepton annihilation channels. In this work we observe that starting from collider energies of a few TeV, electroweak (EW) vector boson fusion/scattering (VBF) at lepton colliders becomes the dominant production mode for all Standard Model processes relevant to studying the EW sector. In many cases we find that this also holds for new physics. We quantify the size and the growth of VBF cross sections with collider energy for a number of SM and new physics processes. By considering luminosity scenarios achievable at a muon collider, we conclude that such a machine would effectively be a “high-luminosity weak boson collider,” and subsequently offer a wide range of opportunities to precisely measure EW and Higgs couplings as well as discover new particles.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
A. Mujdeci ◽  
D. V. Bompa ◽  
A. Y. Elghazouli

AbstractThis paper describes an experimental investigation into confinement effects provided by circular tubular sections to rubberised concrete materials under combined loading. The tests include specimens with 0%, 30% and 60% rubber replacement of mineral aggregates by volume. After describing the experimental arrangements and specimen details, the results of bending and eccentric compression tests are presented, together with complementary axial compression tests on stub-column samples. Tests on hollow steel specimens are also included for comparison purposes. Particular focus is given to assessing the confinement effects in the infill concrete as well as their influence on the axial–bending cross-section strength interaction. The results show that whilst the capacity is reduced with the increase in the rubber replacement ratio, an enhanced confinement action is obtained for high rubber content concrete compared with conventional materials. Test measurements by means of digital image correlation techniques show that the confinement in axial compression and the neutral axis position under combined loading depend on the rubber content. Analytical procedures for determining the capacity of rubberised concrete infilled cross-sections are also considered based on the test results as well as those from a collated database and then compared with available recommendations. Rubber content-dependent modification factors are proposed to provide more realistic representations of the axial and flexural cross-section capacities. The test results and observations are used, in conjunction with a number of analytical assessments, to highlight the main parameters influencing the behaviour and to propose simplified expressions for determining the cross-section strength under combined compression and bending.


Sign in / Sign up

Export Citation Format

Share Document