AbstractA number of non-equimolar refractory high entropy alloys (RF HEAs) from the Al–Ti–Mo–Nb–V system are synthesized, with the selected compositions aimed to balance the conflicting requirements of the low-temperature ductility and high-temperature corrosion protection. Based on the thermodynamic modeling and experimental results, all the obtained alloys are characterized by the single-phase B2 structure with V acting as the main phase stabilizer. The microstructure and mechanical properties appear to be controlled mainly by the Al content, which is
especially visible on the example of hardness, with a maximum value of 545 HV for Al20Ti5Mo25Nb25V25 composition. For the selected Al20Ti5Mo25Nb25V25 and Al10Ti30Mo20Nb20V20 alloys, the measured stress–strain curves indicate the highly coveted, ductile room temperature behavior, with the values of ultimate strain measured under compression mode being 9.17 and 9.00 pct, respectively, and compressive fracture strain of 13.38 and 13.25 pct, respectively. The obtained results suggest that it is possible to include Al as a vital component of refractory HEAs without compromising their low-temperature ductility. The next intended step will be the characterization of the high-temperature corrosion behavior in order to investigate the potential selective oxidation capabilities of such materials.